首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
地球物理   5篇
地质学   6篇
海洋学   8篇
天文学   4篇
  2017年   1篇
  2016年   1篇
  2013年   4篇
  2010年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
2.
We consider a large massM and two small massesm 1 andm 2 (m 1 m 2;m 1,m 2M). The orbit ofm 1 is initially circular and the motion ofm 2 hyperbolic with respect toM. The orbital elements of the small masses are strongly modified after a close, single encounter betweenm 1 andm 2.An approximative method, similar to the theory of stellar encounters, is used to determine the probabilities of collisions, hyperbolas, direct and retrograde ellipses, as well as the mean values of the semimajor axes and their root mean square deviation after the encounter.The results are close to those which are obtained if the massm 2 is negligibly small, (Mm 1m 2;m 2 0), as should be also expected on general grounds.  相似文献   
3.
Sediment resuspension during and after mechanical excavation of macrophytes may have a significant impact on resident fish populations. Unfortunately, little is known about the influence of this sediment on the respiratory performance and feeding abilities of fishes in New Zealand waterways. We examined the effects of suspended sediment (SS) concentrations previously observed after a large-scale macrophyte removal operation on oxygen consumption (MO2) and feeding rates of brown trout (Salmo trutta). MO2 at 0 mg L?1, 150 mg L?1, 300 mg L?1, 450 mg L?1 and 600 mg L?1 of SS was measured using semi-closed respirometry. Feeding rates at the same SS concentrations were also measured using laboratory tank experiments. Results suggest that SS concentrations up to 600 mg L?1 have no effect on MO2. Conversely, feeding rates were significantly reduced at 450 mg L?1 (22% reduction) and 600 mg L?1 (31% reduction), indicating that sediment concentrations above 450 mg L?1 may negatively affect brown trout populations.  相似文献   
4.
Interstitial waters were extracted from cores at three locations in the eastern equatorial Pacific and analyzed for nutrients, dissolved carbonate species, Mn and Fe. From the depth variation in pore water chemistry, we infer that organic matter oxidation reactions occur with depth in the following sequence: O2 reduction, NO3? and MnO2 reduction, and then ferric iron reduction. From NO3? results we infer that O2 is largely or totally consumed within the top few centimeters of sediment. NO3? is completely reduced at a sediment depth of 20 cm at a site near the crest of the East Pacific Rise, but is preserved at levels of 20–30 μmol/kg at 40 cm depth at a Guatemala Basin site.We have calculated the alkalinity for pore water samples assuming ions diffuse according to relative ionic diffusion coefficients, that the stoichiometry of organic matter oxidation reactions is that of “Redfield” organic matter, and that the pore waters are saturated throughout with respect to CaCO3. The measured alkalinity increase is only about half of the predicted value. The difference is probably a result of either enhanced mixing of the pore water in the top few centimeters of sediments by biological or physical processes, or the occurrence of an inorganic reaction which consumes alkalinity.At depths of oxygen and nitrate reduction in the sediments, the ion concentration product of CaCO3 is the same, within the analytical error, as the solubility product of Ingle et al. [34] at 1 atm and 4°C. This result indicates CaCO3 resaturation on pressure change during coring. Where pore water Mn concentrations become measurable, the ion concentration product increases, indicating either supersaturation with respect to calcite or that another phase is controlling the carbonate solubility.  相似文献   
5.
Rare earth elements in pore waters of marine sediments   总被引:2,自引:0,他引:2  
The rare earth elements (REEs) were measured in pore waters of the upper ∼25 cm of sediment from one site off Peru and three sites on the California margin. The pore water REE concentrations are higher than sea water and show systematic down core variations in both concentration and normalized pattern. From these analyses and from comparison to other chemical species measured (dissolved Fe, Mn, Ba, oxygen, nitrate, phosphate), it is suggested that pore water REEs can be grouped into three categories: those that are from an Fe-source, those that are from a POC-source, and cerium oxide. REEs from the Fe-source appear where anoxia is reached; they have a distinctive “middle-REE (MREE) enriched” pattern. The concentrations in this source are so elevated that they dominate REE trends in the Fe-oxide reduction zone. The net result of flux from the POC-source is relative enrichment of heavy-REEs (HREEs) over light-REEs (LREEs), reflecting remineralizing POC and complexation with DOC. A common “linear” REE pattern, seen in both oxic and anoxic sediments, is associated with this POC-source, as well as a “HREE enriched” pattern that is seen in surficial sediments at the Peru site. Overall, the pore water results indicate that Mn-oxides are not an important carrier of REEs in the oceans.A REE biogeochemical model is presented which attempts to reconcile REE behavior in the water and sediment columns of the oceans. The model proposes that POC, Fe-oxide and Ce-oxide sources can explain the REE concentration profiles and relative abundance patterns in environments ranging from oxic sea water to anoxic pore water. The model is also consistent with our observation that the “Ce-anomaly” of pore water does not exceed unity under any redox condition.  相似文献   
6.
We present data for dissolved germanic and silicic acids from several settings: sediment pore water profiles collected from the Peru-Chile continental margin, fluxes measured with in situ benthic flux chambers and shipboard whole-core incubations, and water column profiles from the California continental margin. Collectively, these data show that Ge and Si are fractionated in these continental margin sedimentary environments during diagenesis with ∼50% of the Ge released by opal dissolution being sequestered within the sediments. The areal extent of this diagenetic fractionation covers station depths from ∼100 m to >1000 m. Sediments from these sites typically have high pore water Fe2+ present in the upper ∼2 cm. At sites with low Fe2+ concentrations in the upper pore waters, the Ge:Si benthic regeneration ratio indicates little or no fractionation during diatom dissolution. Consistent with the sedimentary fractionation, water column dissolved Ge:Si ratios along the continental margin are on average lower (0.66 μmol/mol) than the global average ratio (0.72 μmol/mol, Mortlock and Froelich, 1996). This lower “average” ratio is driven by two distinct ΔGe:ΔSi data trends having similar slopes but different intercepts. Data from the upper ∼150 m has a Ge:Si slope of 0.74 ± 0.04 μmol/mol (2σ) and an intercept of 0.5 ± 0.4; whereas below ∼550 m the slope is 0.70 ± 0.06 μmol/mol, but the intercept is −5.0 ± 8.0. Assuming that the sediments sampled here are representative of all reducing marine environments, an assumption requiring further testing, our calculations indicate that sequestration of Ge into a nonopal phase throughout the global ocean in the depth range 0.2-1 km is sufficient to balance the Ge budget. Thus, we tentatively conclude that sequestering of Ge in reducing continental margin sediments is the “missing” Ge sink.  相似文献   
7.
If the mass of the Earth was not considerably larger than at present, the pre-capture orbit of the Moon was in the range 0.9–1.1 A.U. Capture occurred within several 108 years after formation of the Moon.  相似文献   
8.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   
9.
Abstract

This review examines the history and current understanding of the ecology of rocky reef fishes in northeastern New Zealand, marking the fiftieth anniversary of the Leigh Marine Laboratory. The cumulative number of publications increased steadily to c. 180 by 2012. Most attention has been on the snapper (Pagrus auratus, f. Sparidae), the largest in size and economically most important species, and on triplefins (Tripterygiidae), the smallest in size and most diverse family. A strong quantitative school emerged in the 1980s, a period when there was little research on temperate reef fishes elsewhere. A ‘bottom-up’ view of the effects of habitat structure on fish emerged, identifying the key roles of depth, topography and macroalgae. By 2000, attention shifted to using marine reserves as laboratories for ecological research. A ‘top-down’ view of fish as predators emerged, documenting cascading effects on prey communities and habitats. The two different viewpoints have not yet been integrated. Research gaps, including population connectivity and climate change, represent major challenges for the next 50 years.  相似文献   
10.
Quantitative recruitment of ichthyofauna into a South African temporarily open/closed estuary (TOCE) was investigated during three distinct hydrological phases: closed overwash, open outflow and tidal mouth conditions. Maximum recruitment densities occurred during outflow conditions and declined when the system became tidally inundated. Recruitment densities were lowest during overwash events. Selective diel variation was evident, with higher night-time densities for each phase. This study highlights the importance of seasonal timing and duration of open conditions and overwash events for structuring ichthyofaunal community composition of southern African TOCEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号