首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
地球物理   3篇
地质学   3篇
海洋学   4篇
天文学   2篇
自然地理   5篇
  2023年   1篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
2.
We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter (\(\alpha \)). Further, we carry out the model calculation of quasi-periodic oscillation frequency (\(\nu _{\mathrm{QPO}}\)) that is frequently observed in black hole sources and observe that \(\nu ^\mathrm{max}_{\mathrm{QPO}}\) increases with the increase of black hole spin (\(a_k\)). Then, we employ our model in order to explain the High Frequency Quasi-Periodic Oscillations (HFQPOs) observed in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of \(a_k\) based on observed HFQPOs (\(\sim \)300 Hz and \(\sim \)450 Hz) for the black hole source GRO J1655-40.  相似文献   
3.
Three main shocks M-1, M-2 and M-3 (17 October 2005 at 05:45 UTC, M w 5.4; 17 October at 09:46 UTC, M w 5.8 and 20 October at 21:40 UTC, M w 5.9) and their associated aftershocks within the Gulf of S i ğac i k, 50 km southwest of Izmir, Turkey were studied in detail. A temporary seismic network deployed during the activity allowed the hypocentre of M-3 and subsequent aftershocks to be determined with high accuracy. A relative relocation technique was used to improve the epicentres of M-1 and M-2. All three main shocks have strike-slip mechanisms which agree with the linear trends of the aftershock locations. Two distinct zones were illuminated by the aftershock locations. The zones contain clear echelon patterns with slightly different orientations from the trend of the aftershock distribution. M-2 and M-3 ruptured along of the eastern rupture zone which aligns N45°E. However the strike direction of M-1 is not clearly identified. The alignment of the two rupture zones intersect at their southern terminus at an angle of 90°. The fault zones form conjugate pair system and static triggering is considered as a probable mechanism for the sequential west to east occurrence of M-1, M-2 and M-3. This earthquake sequence provides seismological evidence for conjugate strike-slip faulting co-existing within a region dominated by north–south extension and well-developed east–west trending normal faults.  相似文献   
4.
5.
实验室和理论研究表明,地震之前会出现一个渐进性的滑动不稳定阶段,在此期间,断层缓慢滑动,而后突然加速并最终导致动态破裂.本文中,我们报道了迄今记录最为完整的大地震之一,即1999年土耳其Izmit Mw7.6地震之前出现了持续时间很久的源自震源的地震信号.这种信号包含一连串的地震破裂,破裂随时间和低频地震噪声的增加而加...  相似文献   
6.
Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being 90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3–1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100–150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.  相似文献   
7.
8.
Maldives, a South Asian small island nation in the northern part of the Indian Ocean is extremely vulnerable to the impacts of Sea Level Rise (SLR) due to its low altitude from the mean sea level. This artricle attempts to estimate the recent rates of SLR in Maldives during different seasons of the year with the help of existing tidal data recorded in the Maldives coast. Corresponding Sea Surface Temperature (SST) trends, utilizing reliable satellite climatology, have also been obtained. The relationships between the SST and mean sea level have been comprehensively investigated. Results show that recent sea level trends in the Maldives coast are very high. At Male, the capital of the Republic of Maldives, the rising rates of Mean Tidal Level (MTL) are: 8.5, 7.6, and 5.8 mm/year during the postmonsoon (October-December), Premonsoon (March-May) and southwest monsoon (June-September) seasons respectively. At Gan, a station very close to the equator, the increasing rate of MTL is maximum during the period from June to September (which is 6.2 mm/year). These rising trends in MTL along the Maldives coast are certainly alarming for this small developing island nation, which is hardly one meter above the mean sea level. Thus there is a need for careful monitoring of future sea level changes in the Maldives coast. The trends presented are based on the available time-series of MTL for the Maldives coast, which are rather short. These trends need not necessarily reflect the long-term scenario. SST in the Maldives coast has also registered significant increasing trend during the period from June to September. There are large seasonal variations in the SST trends at Gan but SST and MTL trends at Male are consistently increasing during all the seasons and the rising rates are very high. The interannual mode of variation is prominent both in SST as well as MTL. Annual profile of MTL along the Maldives coast is bimodal, having two maxima during April and July. The April Mode is by far the dominant one. The SST appears to be the main factor governing the sea level variations along the Maldives coast. The influence of SST and sea level is more near the equatorial region (i.e., at Gan). There is lag of about two months for the maximum influence of SST on the sea level. The correlation coefficient between the smoothed SST and mean tidal level at Gan with lag of two months is as high as ~ +0.8, which is highly significant. The corresponding correlation coefficients at Male with the lags of one and two months are +0.5 and +0.3, respectively. Thus, the important finding of the present work for the Maldives coast is the dominance of SST factor in sea level variation, especially near the region close to the equator.  相似文献   
9.
A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultanda??-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 < ML < 3.3) were recorded during the period from 5 to 10 February 2002. We analyzed the P and S arrival times and P wave first motion data to obtain high-quality hypocenters and focal mechanisms, which revealed fine details of the fault zone. We infer that the mainshock has ruptured a segment of the Sultanda? Fault Zone that is approximately 37 km long and 7 km wide at depth. The average slip over the rupture plane during the mainshock is estimated to be 32 cm. The linear distribution of the aftershocks and the location of the mainshock epicenter suggest that rupture has initiated in the eastern bending of the fault and propagated unilaterally to the west. The majority of fault plane solutions indicate E–W to ESE–WNW striking oblique–normal faulting mechanisms with an average dip angle of 62° N ± 10° . The high-resolution aftershock seismicity image also shows that faulting involved a complex array of synthetic and possibly antithetic structures during the evolution of the aftershock sequence. The steady increase of the b value towards the west implies that the highest moment release of the mainshock occurred to the west of the epicenter. The study clearly shows the activation of the WNW–ESE-trending Sultanda? Fault Zone along the southern margin of the Ak?ehir-Afyon Graben (AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE–WSW- and NNE–SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE–SSW-trending Karam?k Graben. The intersection of these two grabens, AAG and Karam?k Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.  相似文献   
10.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号