首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   8篇
  国内免费   4篇
测绘学   4篇
大气科学   12篇
地球物理   62篇
地质学   34篇
海洋学   14篇
天文学   10篇
综合类   5篇
自然地理   19篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   1篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   14篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   4篇
  1937年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
1.
In any theory of gravitation that predicts the existence of gravitational waves, it is shown that, in the absence of mass exchange and mass loss and subjected to a condition, a circular binary system with spherically-symmetrical components cannot evolve in such a way that the spin angular velocity is always a linear function of the orbital velocity. Probably this relation between the angular velocities cannot be realized in any time interval. In particular, the system cannot remain in a synchronized state. Of eight special cases of evolution of this binary system, three cases, where the separation increases, are shown to be kinematically impossible while a restriction on the variation of a parameter governing the evaluation of the system can be made in another. In one of the kinematically allowed special cases the separation increases.  相似文献   
2.
Changes in hydrogeological properties of the River Choushui alluvial fan aquifer before and after the 1999 Chi-Chi earthquake, Taiwan, have been identified using pumping tests. Three wells, SH2, YL2 and SC2, located in a compressional zone with high coseismic groundwater levels, were tested. The threshold of the aquifer deformation with respect to transmissivity (T) is greater than that with respect to storage coefficient (S). Decreases in the post-earthquake S are approximately 60% at SH2 and SC2, indicating aquifer compression after the Chi-Chi earthquake. Changes in the post-earthquake T range from 61% increase to 0.8% decrease. Moreover, results from anisotropy analysis of T at SC2 further illustrate that normal stresses induced by the Chi-Chi earthquake have consolidated soil particles. Soil particles dilated laterally after the earthquake, resulting in an increase of the equivalent T. The changes in hydrogeological properties have a considerable influence on spatiotemporal fluid pressure and horizontal groundwater movement, resulting in different amounts of drawdown during post-earthquake pumping.  相似文献   
3.
Earlier models of compressible, rotating, and homogeneous ellipsoids with gas pressure are generalized to include the presence of radiation pressure. Under the assumptions of a linear velocity field of the fluid and a bounded ellipsoidal surface, the dynamical behaviour of these models can be described by ordinary differential equations. These equations are used to study the finite oscillations of massive radiative models with masses 10M and 30M in which the effects of radiation pressure are expected to be important.Models with two different degrees of equilibrium are chosen: an equilibrium (i.e., dynamically stable) model with an initial asymmetric inward velocity, and a nonequilibrium model with a nonequilibrium central temperature and which falls inwards from rest. For each of these two degrees of equilibrium, two initial configurations are considered: rotating spheroidal and nonrotating spherical models.From the numerical integration of the differential equations for these models, we obtain the time evolution of their principal semi-diametersa 1 anda 3, and of their central temperatures, which are graphically displayed by making plots of the trajectories in the (a 1,a 3) phase space, and of botha 1 and the total central pressureP c against time.It is found that in all the equilibrium radiative models (in which radiation pressure is taken into account), the periods of the oscillations of botha 1 andP c are longer than those of the corresponding nonradiative models, while the reverse is true for the nonequilibrium radiative models. The envelopes of thea 1 oscillations of the equilibrium radiative models also have much longer periods; this result also holds for the nonequilibrium models whenever the envelope is well defined. Further, as compared to the nonradiative models, almost all the radiative models collapse to smaller volumes before rebouncing, with the more massive model undergoing a larger collapse and attaining a correspondingly larger peakP c.When the mass is increased, the dynamical behavior of the radiative model generally becomes more nonperiodic. The ratio of the central radiation pressure to the central gas pressure, which is small for low mass models, increases with mass, and at the center of the more massive model, the radiation pressure can be comparable in magnitude to the gas pressure. In all the radiative models, the average periods as well as the average amplitudes of both thea 1 andP c oscillations also increase with mass.When either rotation or radiation pressure effects or both are included in the equilibrium nonradiative model, the period of the envelope of thea 1 oscillations is increased. The presence of rotation in the equilibrium radiative model, however, decreases this period.Some astrophysical implications of this work are briefly discussed.  相似文献   
4.
This work presents a novel neural network‐based approach to detect structural damage. The proposed approach comprises two steps. The first step, system identification, involves using neural system identification networks (NSINs) to identify the undamaged and damaged states of a structural system. The partial derivatives of the outputs with respect to the inputs of the NSIN, which identifies the system in a certain undamaged or damaged state, have a negligible variation with different system errors. This loosely defined unique property enables these partial derivatives to quantitatively indicate system damage from the model parameters. The second step, structural damage detection, involves using the neural damage detection network (NDDN) to detect the location and extent of the structural damage. The input to the NDDN is taken as the aforementioned partial derivatives of NSIN, and the output of the NDDN identifies the damage level for each member in the structure. Moreover, SDOF and MDOF examples are presented to demonstrate the feasibility of using the proposed method for damage detection of linear structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
Energy serves as an alternative index to response quantities like force or displacement to include the duration‐related seismic damage effect. A procedure to evaluate the absorbed energy in a multistorey frame from energy spectra was developed. For low‐ to medium‐rise frames, it required a static pushover analysis of the structure to determine the modal yield force and ductility factor of an equivalent single‐degree‐of‐freedom system for the first two modes. The energy spectra were then used to determine the energy contribution of each mode. A procedure was also developed to distribute the energy along the frame height based on energy shapes. This study showed that the second‐mode response in some cases needs to be considered to reflect the energy (or damage) concentration in the upper floors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
6.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
This study presents a new method to measure stream cross section without having contact with water. Compared with conventional measurement methods which apply instruments such as sounding weight, ground penetration radar (GPR), used in this study, is a non‐contact measurement method. This non‐contact measurement method can reduce the risk to hydrologists when they are conducting measurements, particularly in high flow period. However, the original signals obtained by using GPR are very complex, different from studies in the past where the measured data were mostly interpreted by experts with special skill or knowledge of GPR so that the results obtained were less objective. This study employs Hilbert–Huang transform (HHT) to process GPR signals which are difficult to interpret by hydrologists. HHT is a newly developed signal processing method that can not only process the nonlinear and non‐stationary complex signals, but also maintain the physical significance of the signal itself. Using GPR with HHT, this study establishes a non‐contact stream cross‐section measurement method with the ability to measure stream cross‐sectional areas precisely and quickly. Also, in comparison with the conventional method, no significant difference in results is found to exist between the two methods, but the new method can considerably reduce risk, measurement time, and manpower. It is proven that the non‐contact method combining GPR with HHT is applicable to quickly and accurately measure stream cross section. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Microalgae, a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical, bioenergy and food applications. This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga, Chlorella sorokiniana CY1 which was assisted with sonication. A comparison of monosaccharides and disaccharides as one of the phaseforming constituents shows that the monosaccharides, glucose was the most suitable sugar in forming the phases with acetonitrile to enhance the production of protein(52% of protein). The protein productivity of microalgae was found to be significantly influenced by the volume ratio of both phases, as the yield of protein increased to 77%. The interval time between the sonication as well as the sonication modes were influencing the protein productivity as well. The optimum protein productivity was obtained with 10 s of resting time in between sonication. Pulse mode of sonication was suitable to break down the cell wall of microalgae compared to continuous mode as a lower protein yield was obtained with the application of continuous mode. The optimum condition for protein extraction were found as followed: 200 g/L glucose as bottom phase with volume ratio of I:1.25, 10 s of resting time for ultrasonication, 5 s of ultrasonication in pulse mode and 0.25 g of biomass weight. The high yield of protein about 81% could be obtained from microalgae which demonstrates the potential of this source and expected to play an important role in the future.  相似文献   
10.
The purpose of this study is to discuss the influence of signal nonlinearity upon X-band radar observations. A method for estimating the degree of nonlinearity by bispectral analysis was applied and discussed. We found that bispectral analyses from spatial radar backscatter series are similar to results obtained from water level time series. In addition, the average nonlinear degree from radar backscatter is related to wind speed. The accuracy of wave observations derived by consideration of the nonlinear effect from radar backscatter was also investigated. The estimated error in wave height from the radar data is also related to the degree of nonlinearity. In order to improve accuracy, the modulation transfer function method was applied in order to eliminate the influence of nonlinearity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号