首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
海洋学   6篇
自然地理   1篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1997年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有7条查询结果,搜索用时 78 毫秒
1
1.
2.
Experimental observations of broad-band acoustic propagation in a known geological region of the Atlantic Generating Station (AGS) site (1994) has prompted a new approach to understanding frequency-dependent behavior in shallow-water regions. A modal-based theory is presented to explain quantitatively the interference patterns of transmission loss versus frequency observed in the experimental data. It is shown that the higher modes are responsible for observed interference patterns and that these can be related to modal group velocities using an ideal waveguide model. This may provide new insights applicable to existing inverse techniques  相似文献   
3.
The short time scale (minutes) and azimuthal dependence of sound wave propagation in shallow water regions due to internal waves is examined. Results from the shallow water acoustics in random media (SWARM-95) experiment are presented that reflect these dependencies. Time-dependent internal waves are modeled using the dnoidal solution to the nonlinear internal wave equations, so that the effects of both temporal and spatial variability can be assessed. A full wave parabolic equation model is used to simulate broadband acoustic propagation. It is shown that the short term temporal variability and the azimuthal dependence of the sound field are strongly correlated to the internal wave field  相似文献   
4.
Sources of very low frequency (0.01 to 1.0 Hz) ambient seismic noise in the shallow (<100 m) water continental margin sediments are investigated using Ocean Bottom Seismometers (OBS). The predominant seismic motions are found to be due to surface gravity (water) waves and water-sediment interface waves. Actual experimental measurements of seabed acceleration and hydrodynamic pressure are given, including side by side comparisons between buried and plate-mounted OBS units. OBS-sediment resonant effects are found to be negligible at the low frequencies under investigation. Wherever there exists relative motion between the seabed and the water, however, an exposed OBS is subject to added mass forces that cause it to move with the water rather than the sediments. Calculations based on measured seabed motions show that a neutral density, buried seismometer has superior sediment coupling charactersitics to any exposed OBS design.  相似文献   
5.
Results and recommendations for evaluating the effects of fine-scale oceanographic scattering and three-dimensional (3-D) acoustic propagation variability on the Effects of Sound on the Marine Environment (ESME) acoustic exposure model are presented. Pertinent acoustic scattering theory is briefly reviewed and ocean sound-speed fluctuation models are discussed. Particular attention is given to the nonlinear and linear components of the ocean internal wave field as a source of sound-speed inhomogeneities. Sound scattering through the mainly isotropic linear internal wave field is presented and new results relating to acoustic scattering by the nonlinear internal wave field in both along and across internal wave wavefront orientations are examined. In many cases, there are noteworthy fine-scale induced intensity biases and fluctuations of order 5-20 dB.  相似文献   
6.
Coherence of broad-band acoustic waves for mid-to-high frequencies (0.6-18 kHz) is obtained for a very shallow-water (15-m-deep) waveguide over a wide band of environmental conditions and for a source-receiver range of 387 m. Temporal behavior is sampled at two different rates: one that resolves at fractions of a second over intermittent periods of 40 s and another that resolves at 10 min over periods of several days. Spatial behavior is sampled in the vertical by hydrophones with spacings of the order of meters. The effect of environmental variability on coherence, in particular, soundspeed fluctuations in the water column and wind-induced modulations of the air-sea interface, is noted as a function of acoustic frequency and ray path. Analysis of the acoustic fluctuations over short time scales more accurately resolves the temporal decorrelation of the received signal due to sea surface waves. The vertical sampling of the received signal permits an analysis of arrival-angle fluctuations. The dependence of coherence on the number of surface bounces is studied by comparing arrivals that have zero, one, two, and three surface bounces  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号