首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
地球物理   3篇
地质学   3篇
  2018年   1篇
  2014年   1篇
  2008年   1篇
  2002年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
对采自冲绳海槽中部海底的浮岩样品和邻近陆地樱岛火山的安山岩样品进行了温度 (常温 - 15 0 0℃ )与压力 (常压 - 2 .4 GPa)实验 ,测得在较低温度 -压力条件下 (<1GPa,<80 0℃ )浮岩样品的纵波速度小于安山岩样品的纵波速度 ,在较高温度 -压力条件下 (>1GPa,>80 0℃ )二者的纵波速度接近一致 (5 .9km /s)。 1GPa/80 0℃是浮岩样品和安山岩样品的热动力相变点 ,推测该点的深度大于 18km。  相似文献   
2.
Better models are more effectively connected models   总被引:1,自引:0,他引:1       下载免费PDF全文
Water‐ and sediment‐transfer models are commonly used to explain or predict patterns in the landscape at scales different from those at which observations are available. These patterns are often the result of emergent properties that occur because processes of water and sediment transfer are connected in different ways. Recent advances in geomorphology suggest that it is important to consider, at a specific spatio‐temporal scale, the structural connectivity of system properties that control processes, and the functional connectivity resulting from the way those processes operate and evolve through time. We argue that a more careful consideration of how structural and functional connectivity are represented in models should lead to more robust models that are appropriate for the scale of application and provide results that can be upscaled. This approach is necessary because, notwithstanding the significant advances in computer power in recent years, many geomorphic models are still unable to represent the landscape in sufficient detail to allow all connectivity to emerge. It is important to go beyond the simple representation of structural connectivity elements and allow the dynamics of processes to be represented, for example by using a connectivity function. This commentary aims to show how a better representation of connectivity in models can be achieved, by considering the sorts of landscape features present, and whether these features can be represented explicitly in the model spatial structure, or must be represented implicitly at the subgrid scale. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
6.
Decomposition incorporates organic material delivered by Pacific salmon (Oncorhynchus spp.) into aquatic and terrestrial ecosystems of streams where salmon spawn. We hypothesized that salmon tissue decomposition would be faster, and macroinvertebrate abundance and biomass higher, in terrestrial compared to aquatic habitats, and this would be reflected in the nutritional quality of the tissue. Salmon tissue in coarse-mesh bags was placed in four habitats [terrestrial: riparian (RIP), gravel bars (GRA); aquatic: stream sediment surface (STR), buried in sediments (BUR)] in four southeast Alaska watersheds. After 2 (RIP, GRA) or 4 (STR, BUR) weeks of decomposition, tissue dry mass, macronutrient content, and macroinvertebrate colonizer abundance and biomass were determined. Overall, tissue decomposition was rapid (mean k = 0.088 day?1), while nutritional quality remained high based on elemental ratios (mean C:N = 4.9; C:P = 140; N:P = 30), and differed among habitats (Linear-mixed effects model p < 0.05). Macroinvertebrate assemblages colonizing carcasses were unique to each habitat, although Diptera generally dominated. In terrestrial habitats, the dominant macroinvertebrates were Sphaeroceridae (96 % of invertebrate abundance in RIP habitat) and Calliphoridae larvae (98 % in GRA habitat). In aquatic habitats, the dominant macroinvertebrates were Chironomidae (48 % in STR habitat) and Chloroperlidae (72 % in BUR habitat). Macroinvertebrate colonizer abundance and biomass were higher in RIP (mean 286 individuals and 22 mg g?1) than in other habitats (mean 4 individuals and 3 mg g?1) (Friedman p < 0.05). Rapid decomposition rates and high invertebrate biomass, combined with the high nutritional quality of tissue, suggest rapid incorporation of critical salmon nutrients and energy into both aquatic and terrestrial ecosystems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号