首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  国内免费   1篇
测绘学   5篇
大气科学   2篇
地球物理   10篇
地质学   38篇
海洋学   3篇
天文学   8篇
自然地理   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   11篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
2.
The Krishni–Yamuna interstream area is a micro-watershed in the Central Ganga Plain and a highly fertile track of Western Uttar Pradesh. The Sugarcane and wheat are the major crops of the area. Aquifers of Quaternary age form the major source of Irrigation and municipal water supplies. A detailed hydrogeological investigation was carried out in the study area with an objective to assess aquifer framework, groundwater quality and its resource potential. The hydrogeological cross section reveals occurrence of alternate layers of clay and sand. Aquifer broadly behaves as a single bodied aquifer down to the depth of 100 m bgl (metre below ground level) as the clay layers laterally pinch out. The depth to water in the area varies between 5 and 16.5 m bgl. The general groundwater flow direction is from NE to SW with few local variations. An attempt has been made to evaluate groundwater resources of the area. The water budget method focuses on the various components contributing to groundwater flow and groundwater storage changes. Changes in ground water storage can be attributed to rainfall recharge, irrigation return flow and ground water inflow to the basin minus baseflow (ground water discharge to streams or springs), evapotranspiration from ground water, pumping and ground water outflow from the basin. The recharge is obtained in the study area using Water table fluctuation and Tritium methods. The results of water balance study show that the total recharge in to the interstream region is of the order of 185.25 million m3 and discharge from the study area is of the order of 203.24 million m3, leaving a deficit balance of −17.99 million m3. Therefore, the present status of groundwater development in the present study area has acquired the declining trend. Thus, the hydrogeological analysis and water balance studies shows that the groundwater development has attained a critical state in the region.  相似文献   
3.
A. Umar  T. K. Datta 《Ocean Engineering》2003,30(13):1625-1646
The nonlinear dynamic analysis of a multipoint slack moored buoy is performed under the action of first and second order wave forces. The nonlinearity of the system is caused by the geometric nonlinearity of the mooring lines. The resulting nonlinear equation of motion is solved by an incremental time marching scheme. The nonlinear responses of the system are analysed to investigate different kinds of dynamic instability phenomena that may arise due to the nonlinearity of the system. As an illustrative example, a hollow cylindrical buoy anchored to the sea bed by means of six slack mooring lines is considered. The responses of the system are obtained and analysed for three regular waves namely, 5 m/5 s, 12 m/10 s and 18 m/15 s. The results of the study show that different kinds of instability phenomena like nT subharmonic oscillations, symmetry breaking bifurcation and aperiodic responses may occur in slack mooring systems. Further, a second order wave force may considerably influence the dynamic stability of such systems.  相似文献   
4.
A.A. Shah  A. Umar  N.A. Siddiqui   《Ocean Engineering》2005,32(10):1216-1234
In the present study, a methodology for reliability assessment of slack and taut mooring systems against instability has been presented. For this purpose, first, stability analysis of slack and taut mooring systems has been carried out and instable regions are obtained using procedure available in the literature. Having known the instable region(s), methodology for reliability assessment has been proposed which is based on Monte Carlo Simulation technique. After using the proposed methodology, probabilities of failure and reliability indices has been obtained for the above systems. Some parametric studies, such as, effect of lower and upper limits of instability and effect of frequency range of generations are also included to obtain the results of practical interest.  相似文献   
5.
A structural interpretation of the Ziarat block in the Balochistan region (a part of the Suleiman Fold and Thrust Belt) has been carried out using seismic and seismological data. Seismic data consists of nine 2.5D pre‐stack migrated seismic lines, whereas the seismological data covers the Fault Plane Solution and source parameters. Structural interpretation describes two broad fault sets of fore and back thrusts in the study area that have resulted in the development of pop‐up structures, accountable for the structural traps and seismicity pattern in terms of seismic hazard. Seismic interpretation includes time and depth contour maps of the Dungan Formation and Ranikot group, while seismological interpretation includes Fault Plane Solution, that is correlated with a geological and structural map of the area for the interpretation of the nature of the subsurface faults. Principal stresses are also estimated for the Ranikot group and Dungan Formation. In order to calculate anisotropic elastic properties, the parameters of the rock strength of the formations are first determined from seismic data, along with the dominant stresses (vertical, minimum horizontal, and maximum horizontal). The differential ratio of the maximum and minimum horizontal stresses is obtained to indicate optimal zones for hydraulic fracturing, and to assess the potential for geothermal energy reservoir prospect generation. The stress maps indicate high values towards the deeper part of the horizon, and low towards the shallower part, attributed to the lithological and structural variation in the area. Outcomes of structural interpretation indicate a good correlation of structure and tectonics from both seismological and seismic methods.  相似文献   
6.
Temperature is one of the variables that influence the elasto-plastic behavior and integrity of rock outcrops. Fluctuations in temperature can trigger alteration of some of the mineral properties and impact the brittle-plastic transition. Initiation and propagation of thermally induced tension cracks tend to weaken most rock types. The principal goal of this study was to anticipate impacts of thermal stress-strain cycles on the dynamic response of representative rock units exposed in the Khewra Gorge of the Salt Range Punjab of Pakistan. Ten types of sedimentary rock units were sampled, including marl, dolomite, three types of limestone, and five different sandstones exhibiting varying characteristics in outcrop. Boulder specimens were collected from the field and transported to the laboratory to prepare 50 drill cores that could be subjected to thermal cycling between 50 and 200 °C in increments of 50 °C. Room temperature core samples were tested using an Erudite resonance frequency meter to measure their Q-factors and the resonance frequency (Fr) at an applied loading frequency of 7 KHz with 0.01 V output voltage. Results suggest that thermal cycling tends to reduce the dynamic Young’s modulus (Ed) and Q-factor. Other parameters, such as damping ratio (ξ), specific damping capacity (Ψ), and loss factor (?) appeared to increase with increasing temperature cycles, likely as a result of developing thermally induced tensile fractures. The resultant values of the null hypothesis (t-critical and t-stats) suggests that the null hypothesis can be discarded because there was no observable difference between the measured and expected values for the cores tested. The observations and data emanating from this study might be useful in designing low-level radioactive waste landfills, nuclear waste repositories, and deep underground excavations where the increased temperature could alter the mechanical behavior of the parent rock mass.  相似文献   
7.
Natural Resources Research - There have been many studies carried out in the past decades attempting to develop strategies for a safe injection of CO2 into storage sites without leakage and...  相似文献   
8.
9.
The use of slickline distributed temperature sensing (SL-DTS) technology is becoming widespread due to its ease of operation and ability to acquire real-time multiple temperature traces inside the wellbore. Injection of treated acid gas (TAG)—a mixture of CO2 and H2S—into geologic formations has become an attractive technical and economic option for oil and gas producers and processors who are faced with regulations concerning excess sulfur and greenhouse gas emissions. Acid gas injection (AGI) into geologic formations is more economical and more flexible in dealing with varying TAG compositions than sulfur recovery units (SRUs) using the Claus process. SRUs do not achieve air quality standards and have high operation and maintenance costs. In addition, there is low demand for sulfur and sulfur disposal costs are high. The results of the analysis of SL-DTS data acquired in conjunction with step rate and pressure falloff (PFO) tests are presented in this paper. These tests were conducted to evaluate the injection potential of geologic formations. The injection zone consisted of a carbonate formation characterized by Karst features, vugs, and natural fractures. The SL-DTS data during the initial injection flow rate for the step rate test (SRT) indicated that high permeability zones accepted fluid at lower injection rates. An increasing number of discrete zones began to accept fluid as the injection rate was increased. The results of the SRT provided the fracture pressure of the formation. This information was used to design an AGI program that would avoid fracturing the formation while allowing for the required volume of TAG to be injected. The results of the PFO test provided information on the reservoir pressure and permeability and also indicated the presence of one or more hydraulic fractures. This case study of SL-DTS measurements made during a SRT and a PFO test for the design of an AGI well provides valuable insights into the potential of DTS technology and its use in AGI and carbon capture/sequestration (CCS) operations. Its findings could be applied to analyze injection potential of geological formations not only for AGI projects but also for CCS, and CO2 enhanced oil recovery opportunities.  相似文献   
10.
In the Global Positioning System, there is no provision for real-time integrity information within the Standard Positioning Service, by design. However, in safety critical sectors like aviation, stringent integrity performance requirements must be met. This can be achieved using the special augmentation systems or RAIM (Receiver Autonomous Integrity Monitoring) or both. RAIM, the most cost-effective method relies on data consistency, and therefore requires redundant measurements for its operation. An external aid to provide this redundancy can be in the form of an Inertial Navigation system. This should enable continued performance even when no redundant satellite measurements are available. An algorithm presented in previous papers by the authors detects the rate of slowly growing errors. The algorithm was shown to be effective for early detection of slowly growing errors that belong to the class of most difficult to detect errors. Firstly, rate detector is tested for varying faults. Secondly, real data are used to validate the rate detector algorithm. The data are extensively analyzed to ascertain whether it is suitable for integrity and fault diagnostics. A modification to the original rate detector algorithm is suggested by addition of a bias state to the dynamic model. The performance is then compared with the existing techniques and substantial improvement is shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号