首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地质学   14篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 46 毫秒
1.
The mineral composition and U-Pb and Rb-Sr systematics of phosphorites from the Satka Formation of Lower Riphean carbonates, the Burzyan Group of Southern Urals, are studied. Phosphorites occurring as small lenses between stromatolite layers are composed largely of fluorapatite with admixture of detrital quartz, feldspars, illite, and chlorite. Phosphorite samples have been subjected to stepwise dissolution in 1 N (fraction L-1) and 2 N (fraction L-2) HCl. As is established, the maximum apatite content is characteristic of fraction L-1, while fraction L-2 is enriched in products of dolomite and sulfide dissolution and in elements leached from siliciclastic components. The Sr content in the Satka apatites (280–560 ppm) is substantially lower as compared with that in unaltered marine apatite. The 87Sr/86Sr “initial ratio in the phosphorites studied (0.71705–0.72484) and host dolomites from the lower part of the Satka Formation is significantly higher than in the Early Riphean seawater that indicates a reset of the Rb-Sr original systems in sediments. The Pb-Pb age of 1340 ± 30 Ma (MSWD = 6.4) estimated based on 7 data points characterizing fractions L-1 and L-2 is younger than the formation time of overlying Burzyan sediments, being consistent, within the error range, with date of the Mashak rifting event recorded at the Early-Middle Riphean boundary. The comparative U-Pb characteristics of two soluble fractions (L-1 and L-2) and silicate residue of phosphorites show that epigenetic redistribution of Pb and U was characteristic of the phosphorite horizon only. The initial Pb isotope composition and μ (238U/204Pb) estimated according to model by Stacey and Kramers for the early diagenetic fluids in carbonate and phosphate sediments of the Satka Formation suggest that they were in isotopic equilibrium with erosion products of the Taratash crystalline complex.  相似文献   
2.
Rb–Sr systematics has been studied in 13C-rich carbonate rocks of the Paleoproterozoic (2.09 ± 0.07 Ga) Tulomozero Formation in the northern Onega Lake area, the SE Fennoscandian Shield. The formation is divided into eight members (A–F) consisting of greenschist-facies-grade, variegated sandstones, siltstones, mudstones, stromatolitic dolostones and subordinate crystalline limestones. Samples of carbonate rocks were obtained from two overlapping drillholes intersecting the entire thickness of the Tulomozero Formation. Prior to isotope analysis, the rocks powders were treated with 1N ammonium acetate for partial removal of the late epigenetic carbonate phases. Major resetting of the Rb–Sr systems in the Tulomozero carbonate rocks appears to take place during the Svecofennian regional metamorphic event, and it was screened by using Mn/Sr, Fe/Sr, Mg/Ca, and 18O/16O ratios. High Sr content (up to 2080 μg/g in limestones, and 530 μg/g in dolostones) coupled with low Fe/Mn (<0.40) ratios in the Tulomozero carbonate rocks of Members A, B (the lower part), D, F, and E are consistent with accumulation of original carbonate sediments in evaporitic lacustrine, playa, and sabkha environments. A decrease in the Sr content with concurrent increase in the Fe/Mn ratio (>0.40) in dolostones of the upper part of Member B, and of Members G and H is indicative of seawater influxes (sea transgression) into the Tulomozero basin. The 87Sr/86Sr values in the least altered (Mn/Sr < 2.0) marine dolostones are 0.70418–0.70442 and 0.70343–0.70409 for the earlier and late phases of the marine transgression, respectively. The decrease in the 87Sr/86Sr ratio in ca. 2.1 Ga seawater is attributable to an increase in hydrothermal flux Sr into the Palaeoproterozoic ocean.  相似文献   
3.
Fine-grained clayey subfractions (SF) with particle sizes of 1–2, 0.6–1.0, 0.3–0.6, 0.2–0.3, 0.1–0.2, and <0.1 μm were extracted from shales of the Vendian Staraya Rechka Formation in the Anabar Massif and studied by XRD and Rb-Sr methods. All the clayey subfractions are represented by illite with high crystallinity indices, which are characteristic of the low-temperature diagenesis/catagenesis zone and grow with the decrease of the particle size. The Rb-Sr systematics in clayey subfractions combined with mineralogical data provide grounds for the conclusion that illite from clayey rocks of the Staraya Rechka Formation was forming during two periods: approximately 560 and 391–413 Ma ago. The first illite generation was likely formed in the course of lithostatic subsidence of the Staraya Rechka sediments and the second one, during the Devonian lithogenesis stage. It is assumed that age of the first generation (∼560 Ma) is close to that of the Staraya Rechka Formation. This inference is consistent with biostratigraphic, chemostratigraphic, and geochronological data obtained for both rocks of the Anabar Massif and Vendian sediments from other regions of Siberia.  相似文献   
4.
Doklady Earth Sciences - A mineralogical-geochemical study of globular phyllosilicates (GPS) of the glauconite-illite series of the Dolgokta Formation from the stratigraphic well Chunkinskaya Well...  相似文献   
5.
6.
The first geochemical and Sm-Nd isotopic characteristics of Neoproterozoic-Cambrian manganese ores from the south folded framing of the Siberian Craton have been obtained. For manganese ores from the Podikat deposit, Tsagan-Zaba and, in part, for Slyudyanka ore manifestations, an explicit positive Eu anomaly and variable Ce behavior are typical no depending on degree of metamorphism. In the rocks of Itantsa ore manifestation and, in part, in those of Slyudyanka, REEs have distribution patterns similar to the normal sedimentary pattern and are characterized by a gentle slope with a negative Eu anomaly and by the absence of a Ce anomaly. With the geochemical peculiarities, including REE distribution in them, on aggregate, reconstruction of vast hydrothermal fields within the south framing of the Siberian Craton and spatial position of the studied manganese basins relative to the craton has become possible.  相似文献   
7.
By the end of the Archean, the period of active volcanism, plutonism, accretion, and cratonization had been completed by the construction of stable continental plates. Afterward, cratons were subject to intense extension owing to mainly mantle diapirism and ascent of asthenospheric flows, which gave rise to the formation of ensialic intracratonic basins, whereas other linear troughs were expressed in the formation of continental rifts. Zones of continental rifting are characterized by a wide spectrum of mineral resources (Cu, Ni, PGE, Co, Ti, V, etc.) related to igneous complexes. This paper is focused on metallogeny of nickel-sulfide and PGE mineralization in the Fennoscandian Shield. The results of metallogenic analysis of Paleoproterozoic riftogenesis, along with the account of previous achievements, have shown that the aforementioned mineralization is related to three consecutive plume-tectonic pulses of mantle activization, which are expressed in (i) upwelling of the subcontinental mantle enriched in LREE, (ii) intrusion of mafic and ultramafic melts derived from enriched and depleted Archean mantle sources, and (iii) formation of low-sulfide Pt–Pd and Pt-bearing Cu–Ni sulfide deposits.  相似文献   
8.
The middle part of the volcanosedimentary Zaonega Formation of the Ludikovian Suprahorizon (approximately 2.0 Ga) includes large carbonates concretions and lenses in shungite layers. Carbonate lenses and concretions are primarily elongated and flattened, and their thickness varies from tens of centimeters to a few meters. Some lenses retain relicts of lamination. Concretions are composed of calcite or dolomite. They contain abundant organic matter, as well as mica, talc, chlorite, quartz, and pyrite crystals. The calcite concretions contain some dolomite admixture (Mg/Ca = 0.011?0.045) and differ from sedimentary limestones by a low Fe/Mn value (0.3–2.1). The Sr content is as much as 385–505 μg/g in most samples and is low (86 μg/g) only in one sample. The Rb-Sr systematics of carbonate concretions was studied with the stepwise dissolution procedure, which included processing with the ammonium acetate solution (AMA fraction) to partially remove the secondary carbonate material, with dissolution of the residue in acetic acid (ACA fraction). In individual calcite samples, discrepancy between the measured 87Sr/86Sr values in the AMA and ACA calcite fractions shows a variation range of 0.0008–0.0033. The initial 87Sr/86Sr ratio in the ACA fractions of the studied samples varies from 0.7053 to 0.7162. The ratio shows a positive correlation with Mg/Ca and the proportion of siliciclastic admixture and negative correlation with the Mn content. The concretions were formed when the sediments subsided, probably, during the transition from a zone with “mild” reductive conditions to zones with active sulfate reduction and methanogenesis. In the sulfate reduction zone, where most pyrite-bearing concretions were formed, the sediment was not geochemically exchaged with the bottom water and was evolved into a closed or semiclosed system. Processes of diagenesis in this zone promoted the release of the radiogenic 87Sr from the associated siliciclastic minerals, resulting in growth of the initial 87Sr/86Sr in concretions up to 0.7108–0.7162. Some calcite concretions, which lacked pyrite (or contained its minimal amount) were likely formed in a thin surficial sediment layer located above the sulfate reduction zone. Therefore, they precipitated Sr in isotope equilibrium with Sr of the bottom water. However, large concretions and carbonate lenses with an insignificant siliciclastic admixture could retain the signature of early diagenesis or even sedimentation. The initial 87Sr/86Sr ratio in one of such samples with the siliciclastic admixture of 6.2% makes it possible to estimate the maximal value of this ratio (0.7053) in the Ludikovian paleobasin.  相似文献   
9.
Fine-grained clay subfractions, SFs (particle size <0.1, 0.1–0.4, 0.4–0.6, and 0.6–2.0 μm) separated from a sample of the Lower Cambrian blue clay of the Lontova Formation were studied with XRD and Sm-Nd methods. The relatively coarse-grained SFs include illite with a small admixture of chlorite, while the finegrained SF (<0.1 μm) consists of mixed-layer illite-smectite. The illite crystallinity index (I c ) increases with decreasing particle size. The leaching of SFs with 1N HCl, analysis of Sm-Nd systematics of leachates and residues, as well as XRD data and results of chemical analysis show that the studied rocks contain at least two generations of minerals. The first (detrital) generation is related to the transformation of provenance material, whereas the second (authigenic) generation was formed at the postsedimentary stage of the evolution of the Lontova sediments. The Sm-Nd date of the first generation (790±90 Ma) is considered a minimal age of rocks in the northeastern and southwestern regions of the East European Platform that served as a source of sedimentary material of the Lower Cambrian blue clay. The date of the second generation of minerals reflects the timing of authigenic mineral formation in the course of burial and diagenetic and catagenetic reworking of clay sediments.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号