首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   4篇
地质学   3篇
海洋学   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2002年   1篇
  2001年   1篇
  1996年   2篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
Settled particles of fresh, labile organic matter may be a significant source of oxygen demand and nutrient regeneration in seasonally-hypoxic regions caused by nutrient inputs into stratified coastal zones. Studying the dynamics of this material requires sediment sampling methods that include flocculent organic materials and overlying water (OLW) at or above the sediment–water interface (SWI). A new coring device (“HYPOX” corer) was evaluated for examining nitrogen- (N) and oxygen-dynamics at the SWI and OLW in the northern Gulf of Mexico (NGOMEX). The HYPOX corer consists of a “Coring Head” with a check-valve, a weighted “Drive Unit,” and a “Lander,” constructed from inexpensive components. The corer collected undisturbed sediment cores and OLW from sediments at NGOMEX sampling sites with underlying substrates ranging from sand to dense clay. The HYPOX corer could be deployed in weather conditions similar to those needed for a multi-bottle rosette water-sampling system with 20 L bottles. As an example of corer applicability to NGOMEX issues, NH4+ cycling rates were examined at hypoxic and control sites by isotope dilution experiments. The objective was to determine if N-dynamics in OLW were different from those in the water column. “Ammonium demand,” as reflected by potential NH4+ uptake rates, was higher in OLW than in waters collected from a meter or more above the bottom at both sites, but the pattern was more pronounced at the hypoxia site. By contrast, NH4+ regeneration rates were low in all samples. These preliminary results suggest that heterotrophic activity and oxygen consumption in OLW in the hypoxic region may be regulated by the availability of NH4+, or other reduced N compounds, rather than by the lack of sufficient labile organic carbon.  相似文献   
3.
Microbial mat communities host complex biogeochemical processes and play a role in the formation of most carbonate rocks by influencing both carbonate precipitation and dissolution. In this study, the biogeochemistry of microbial mats from the hypersaline Salt Pond, San Salvador, Bahamas are described using scanning electron microscopy, X-ray diffraction, microelectrode profiling, fatty acid methyl esters, and carbon and nitrogen analyses. These microbial mats are distinctly layered both chemically and with regard to composition of microbial community, where significant (?? < 0.05) differences are noted between layers and cores. Furthermore, an oxic upper zone and an H2S-rich lower zone dominate the Salt Pond microbial mats, where H2S concentrations were measured approaching 8 mM. The high H2S concentrations along with the lacking evidence of mineral precipitation in SEM images point to the prevalence of carbonate dissolution. Moreover, the high concentrations of organics (3?C9%) reveal that the mats are self-sourcing and can provide ample fuel to sustain the highly active heterotrophic (both aerobic and anaerobic) metabolism. Seasonal differences in sulfide and oxygen concentrations in Salt Pond mats indicate that the carbonate dissolution and precipitation reactions are dynamic in this hypersaline lake.  相似文献   
4.
The factors controlling the chemistry of 69 low-order streams in the Blue Ridge and Valley and Ridge physiographic provinces of Virginia and Maryland were studied over a 13-month period. Principal component analysis was used to examine regional patterns in stream chemistry and to examine the degree to which the chemistry of low-order streams is controlled by the bedrock upon which they flow. Streams clustered into regionally isolated groups, strongly related to bedrock type, with SO2?4 and HCO?3 the chemical variables of most importance. Sulphate concentrations appear to be strongly controlled by climate and hydrology, and sorption in the soils within the watershed. Much of the atmospherically derived SO2?4 accumulates in watersheds during the growing season and is later flushed out. Weathering reactions were found to be particularly important in the production of HCO?3, accounting for 91 per cent on an annual basis, and export of divalent cations from these watersheds, accounting for 48–50 per cent on an annual basis. About half of non-anthropogenic Na+ was derived from weathering of silicates, whereas nearly all K+ was identified with leaching by SO2?4. Water chemistry was strongly related to the rock type in the watershed and the weatherability of the component minerals. Rock type is not a randomly distributed function; instead, it is controlled by geologic factors that result in clusters of similar rock types in a given region. When planning large synoptic studies, it is extremely important to consider that a sampling scheme based on random sampling of a non-randomly distributed function May, not provide the most accurate representation of the variables of interest. Instead, a hierarchical sampling scheme May, be indicated. Our results also suggest that, although one sample in time May, be sufficient to characterize the primary geochemical factors controlling stream chemistry throughout the year, it May, not be sufficient to detect subtle, flow-related alterations in chemistry.  相似文献   
5.
6.
Upper Cretaceous (Santonian-Maastrichtian stages) strata of the eastern US Gulf Coastal Plain represent a relatively complete section of marine to nonmarine mixed siliciclastic and carbonate sediments. This section includes three depositional sequences which display characteristic systems tracts and distinct physical defining surfaces. The marine lithofacies are rich in calcareous nannoplankton and planktonic foraminifera which can be used for biostratigraphic zonation. Integration of this zonation with the lithostratigraphy and sequence stratigraphy of these strata results in a framework that can be used for local and regional intrabasin correlation and potentially for global interbasin correlation. Only the synchronous maximum flooding surfaces of these depositional sequences, however, have chronostratigraphic significance. The sequence boundaries and initial flooding surfaces are diachronous, and their use for correlation can produce conflicting results. The availability of high resolution biostratigraphy is critical for global correlation of depositional sequences.  相似文献   
7.
Toxicities of sediments from San Diego and San Francisco Bays were compared in laboratory experiments using sea urchin (Strongylocentrotus purpuratus) embryos exposed to pore water and at the sediment-water interface (SWI). Toxicity was consistently greater to embryos exposed at the SWI to intact (unhomogenized) sediment samples relative to homogenized samples. Measurement of selected trace metals indicated considerably greater fluxes of copper, zinc, and cadmium into overlying waters of intact sediment samples. Inhibition of sea urchin embryo development was generally greater in sediment pore waters relative to SWI exposures. Pore water toxicity may have been due to elevated unionized ammonia concentrations in some samples. The results indicate that invertebrate embryos are amenable to SWI exposures, a more ecologically relevant exposure system, and that sediment homogenization may create artifacts in laboratory toxicity experiments.  相似文献   
8.
Although epibiotic protozoans are commonly observed on the chitinous exoskeleton of aquatic crustaceans, relatively little is known about their ecological significance. The significance of protozoan epibionts on benthic copepods has never been examined.Coullana sp., a meiobenthic harpacticoid copepod, is abundant in Louisiana salt marshes and has high incidence (∼50%) of ciliate epibionts. Field and laboratory grazing experiments indicated that ciliate epibionts did not hinderCoullana feeding on benthic or planktonic algae. Contrary to expectations,Coullana with high levels of ciliate epibionts (>8 ind−1) grazed at a significantly higher rate on14C-labeled benthic diatoms added to intact sediment cores than didCoullana with no epibionts.Coullana neutral lipids (examined using Nile Red, a hydrophobic fluorophore) were not significantly influenced by the presence of ciliate epibionts, suggesting that copepods are able to compensate for any additional energetic demands imposed by epibionts. Epibiont effects onCoullana susceptibility to hydrocarbon contaminants were measured by examining survivorship in diesel-spiked sediments. The presence of ciliate epibionts significantly decreased survivorship at relatively low PAH concentrations (12.8 ppm). While ciliate epibionts onCoullana do not dramatically alter total food acquisition or energy storage, they may cause stress, which in turn makesCoullana more susceptible to contaminants and possibly other natural stressors such as food limitation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号