首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
地质学   18篇
  2009年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有18条查询结果,搜索用时 125 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
2.
The high-K alkaline volcano Muriah is situated in central Javaand has erupted two lava series, a younger highly potassic series(HK) and an older potassic series (K). The HK series has higherK2O contents for a given MgO content; greater silica undersaturation;and higher concentrations of LILE (Rb, Sr, Ba, and K), LREE(La and Ce), and HFSE (Nb, Zr, Ti, and P), than the K series.The HK series lavas have incompatible trace element patternssimilar in many respects to ocean island basalts. The K serieshas slightly higher 87Sr/86Sr (O70453 [GenBank] -O70498) and 18O (+6?2to + 8?4%o) and lower 143Nd/144Nd (0?512530–0?5126588)than the HK series (for which 87Sr/86Sr = 0?70426–0?70451,<518O = +6?52 to +7–0%o, and 1*3Nd/1*4Nd= 0?512623–0?512679),and higher LILE/HFSE and LREE/ HFSE ratios. A7/4 and A8/4 arehigh and do not show any systematic change from the K to theHK series. The proposed model for the Muriah lavas involvesthree source components: (1) the astheno-sphere of the mantlewedge of the Sunda arc, which has Indian Ocean MORB characteristics;(2) a metasomatic layer situated at the base of the lithosphere,which has characteristics similar to enriched mantle (i.e.,EMU); (3) subducted pelagic sediments from the Indian Ocean. Trace element and isotope data indicate that the characteristicsof the K series are produced by mixing of two endmember magmas:an undersaturated magma derived wholly from within-plate sourcesand a calc-alkaline magma derived from the subduction-modifiedasthenospheric mantle. The calc-alkaline magma is believed tobe contaminated by the arc crust before mixing. Low-pressurefractionation took place in the K series after mixing. Initiallithospheric extension in the Bawean trough (in which Muriahis located), may be responsible for decompressive melting ofthe metasomatic layer and thus the production of the HK serieslavas. The magmas erupted from Muriah show a transition fromintraplate to subduction zone processes in their genesis.  相似文献   
3.
Pliocene volcanics on the island of Bequia comprise two interbeddedsuites of basalts and andesites. The isotopically homogeneoussuite (IHS) has a limited range of Sr—Nd—Pb isotopes(87Sr/86Sr 0.7040–0.7046, 143 Nd/144 Nd 0.5130 and 206Pb/204Pb 19.36–19.51), and mantle-like 18O values (5.5in clinopyroxene). The isotopically diverse suite (IDS) is characterizedby much wider ranges of radiogenic isotopes (87 Sr/86Sr 0.7048–0.7077,143 Nd/144 Nd 0.5128–0.5123 and 206 Pb/204 Pb 19.7–20.2),in which all of the Sr and Pb ratios are higher and Nd ratiosare lower than those of the IHS. The IDS is also characterizedby high 18 O values, up to 7.6 in clinopyroxene. The Sr andPb isotope ratios are too high, and the Nd isotope ratios aretoo low in the IDS for any of these lavas to be derived fromunmodified depleted mantle. Both suites are petrologically very similar and their majorelement compositions and phenocryst contents suggest that theywere formed largely by fractional crystallization of a hydroustholeiitic melt at pressures <3 kbar. The isotopic ratiosand enrichments in large ion lithophile elements (LILE), andto some extent light rare earth elements (LREE), as comparedwith mid-ocean ridge basalts (MORB), of the IHS lavas suggestthat they were derived from a depleted mantle source which hadbeen re-enriched by the addition of 1–4% of a subductioncomponent. This component probably comprised a mixture of dehydrationfluids, and perhaps minor siliceous melts, released from subductingsediments and mafic crust. The extreme isotopic ranges, largeenrichments in incompatible elements, more fractionated LREEpatterns and higher 18 O values of the IDS lavas are interpretedas resulting from 10–55% assimilation—fractionalcrystallization of sediments, derived from the Guyana Shield,which are present in the arc crust, by IHS type melts. KEY WORDS: trace elements; radiogenic isotopes; arc lavas; Lesser Antilles *Corresponding author.  相似文献   
4.
The picritic (MgO >13·5%) lavas of Grenada providea unique opportunity to evaluate the platinum group elements(PGE) and Os isotope compositions of primitive subduction-generatedmelts. Compared with other arc lavas they have undergone verylimited crustal contamination (  相似文献   
5.
The origin of potassic lavas with within-plate characteristicsin island are settings is unclear. The volcanic complex of Ringgit—Beser,situated in eastern Java, has erupted lavas of both normal islandare calc-alkaline type and atypical potassic lavas, includingsome highly magnesian lavas. The occurrence of these primitivelavas gives an unusual insight into the source characteristicsof the potassic lavas. The lavas from Ringgit—Beser have a wide range of K2O(1.1–6.4 wt. %) and MgO contents (18.0–1.6 wt.%).The most magnesian lavas have high Ni and Cr contents. The calc-alkalinelavas have incompatible trace element patterns typical of islandare lavas with enrichments in large ion lithophile elements(LILE) and light rare earth elements (LREE) relative to highfield strength elements (HFSE) and heavy REE (HREE). The potassiclavas may be divided into two series on the basis of Ba andNb contents, with the enriched potassic (EK) series having higherBa and Nb contents for a given MgO content than the potassic(K) series. The EK and K series lavas have some incompatibletrace element ratios similar to within-plate lavas (e.g., highCe/Pb, low LILE/HFSE ratios, and low B/Be). However, both theEK series and K series lavas have negative Ti and Zr anomalies,and the EK series lavas have high Ba/La similar to are lavas.There is little distinction in Sr and Nd isotopes between theK and EK series, but the calc-alkaline lavas have lower 87Sr/86Srand higher 143Nd/144Nd ratios than the potassic lavas. The EKseries lavas have lower 206Pb/204Pb and higher 208Pb/204Pb thanthe K series lavas, but similar 207Pb/204Pb ratios. The K serieslavas define an almost horizontal trend in 207Pb–206Pbspace. The Pb isotopic ratios indicate that the EK series lavasare derived from a single mantle source, whereas the K seriesoriginate from a mixture of two mantle components. Calc-alkalinelavas have Pb isotope ratios similar to other calc-alkalineand tholeiitic lavas from Java, and plot on a mixing line betweenIndian Ocean mid-ocean ridge basalt (MORB) and Indian Oceansediment. Incompatible trace element and Pb isotope data for the calc-alkalinelavas indicate that these lavas have a similar source to othercalc-alkaline lavas erupted in Java, namely melts of the IndianOcean MORB mantle fluxed by fluids from the subducted slab.The potassic lavas originate from enriched mantle sources withinthe wedge which have not been affected by recent subductionprocesses. The EK series lavas are derived from a metasomatizedzone which has EMI-type characteristics. The K series lavasare derived from mixing of melts from Christmas Island-type(EMII) mantle and the metasomatized zone. The metasomatizedzone is probably situated at the base of the lithosphere andthe Indian Ocean MORB and Christmas Island-type mantle componentsare situated in the asthenosphere of the wedge. Isotopic datafor Ringgit—Beser lavas confirm that the mantle wedgeof the Sunda arc is extremely heterogeneous (Foden & Varne,1980; Varne, 1985; Wheller et al., 1987). The similarity in geochemistry between Indonesian potassic lavasand those erupted in continental settings indicates that themagma source is essentially the same, namely a metasomatizedphlogopite-rich layer generated by melts of recycled subductedlithosphere. The lack of negative Ti anomalies in the continentalpotassic lavas is ascribed to lower oxidation states in themantle in continental settings.  相似文献   
6.
同正常的残余方辉橄榄岩相比,辉南方辉橄榄岩具有异常高的HREE组成和特殊的二次重结晶结构,因此,它们不是上地幔经大程度部分熔融后的残余,而是熔体-岩石反应的结果。倒U型REE分配模式暗示这些样品经历了与玄武质熔体相互作用的历史,并达到了平衡,大量熔(流)体的存在有利于地幔岩石矿物颗粒的增长,从而形成特征的二次重结晶结构。这种“反应”型方辉橄榄岩的形成可能与上涌软流图对岩石圈地幔的热-化学浸蚀有关。“反应型”方辉橄榄岩形成之后,又受到了类似于碳酸岩或富挥发份小体积熔体的交代,因此辉南地区上地幔经历了多期地幔交代作用。  相似文献   
7.
Prograde P–T paths and thermal modelling suggest metamorphism in the Sanbagawa belt represents unusually warm conditions for subduction-type metamorphic belts, and these likely reflect conditions of a convergent margin a few million years before the arrival of an active spreading ridge. Radiometric age data and kinematic indicators of ductile deformation suggest the Sanbagawa belt formed in a Cretaceous convergent margin associated with a plate movement vector that had a large sinistral oblique component with respect to the belt, the East Asian margin. Plate reconstructions for the Cretaceous to Tertiary for this region show that the only plausible plate compatible with such motion at this time is the Izanagi plate. These reconstructions also show that progressively younger sections of the Izanagi plate were subducted beneath eastern Asia, i.e. a spreading ridge approached, until 85–83 Ma when the Izanagi Plate ceased to exist as an independent plate. The major reorganization of plates and associated movements around this time is likely to be the age of major interaction between the ridge and convergent margin. The ridge-approach model for the Sanbagawa metamorphism, therefore, predicts that peak metamorphism is a few million years older than this age range. New Lu–Hf dating of eclogite in the Sanbagawa belt gives ages of 89–88 Ma, in excellent agreement with the prediction. Combining this estimate for the peak age of metamorphism with published P–T-t results implies vertical exhumation rates of greater than 2.5 cm yr−1. This high rate of exhumation can explain the lack of a significant thermal overprint in the Sanbagawa belt during subduction of the ridge.  相似文献   
8.
Miocene to Pleistocene calc-alkaline volcanism in the East Carpathianarc of Romania was related to the subduction of a small oceanbasin beneath the continental Tisza–Dacia microlate. Volcanicproducts are predominantly andesitic to dadtic in composition,with rare basalts and rhyodacites (51–l71% SiO2; mg-number0.65–0.26) and have medium- to high-K calcalkaline andshoshonitic affinities. Mg, Cr and Ni are low in all rock-types,indicating the absence of primary erupted compositions. Detailedtrace element and Sr, Nd, Pb and 0 isotope data suggest thatmagmas were strongly crustally contaminated. Assimilation andfractional crystallization (AFC) calculations predict the consumptionof 5–35% local upper-crustal metasediments or sedimentsfrom the palaeo-accretionary wedge. Variations in the isotopiccomposition of the contaminants and parental magmas caused variationsin the mixing trajectories in different parts of the arc Themost primitive isotopic compositions are found in low-K dacitesof the northern Cdlimani volcanic centre and are interpretedas largely mantle derived. A second possible mantle reservoirof lower 149 Nd/144 Nd and lower 206 Pb/204 Pb is identifiedfrom back-arc basic calc-alkaline rocks in the south of thearc Both magmatic reservoirs have elevated isotopic characteristics,owing either to source bulk mixing (between depleted or enrichedasthenosphere and <1% average subducted local sediment) orlower-crustal contamination. KEY WORDS: Carpathians; assimilation; calc-alkaline; Sr-Nd-Pb-0 isotopes; laser flurination  相似文献   
9.
The Northern Apennine ophiolites are remnants of the MiddleJurassic–Early Cretaceous lithosphere from the LigurianTethys. New trace element and Nd–Sr isotope investigationswere performed on: (1) the rare gabbros associated with thesubcontinental mantle rocks from the External Liguride ophiolites;(2) the gabbro–peridotite association from the poorlyknown ophiolitic bodies from Cecina valley (Southern Tuscany).Clinopyroxenes from the External Liguride and Cecina valleygabbros have similar trace element compositions, which are consistentwith formation from normal mid-ocean ridge basalt (N-MORB) magmas.Sm–Nd mineral isochron ages are 179 ± 9 Ma foran External Liguride gabbro and 170 ± 13 Ma and 173·5± 4·8 Ma for two different gabbroic bodies fromthe Cecina valley ophiolites. These ages are interpreted todate the igneous crystallization of the gabbros and are slightlyolder than the oldest pelagic sediments of the Ligurian Tethys.Initial  相似文献   
10.
Oxygen isotope ratios determined by laser fluorination analysison olivine, clinopyroxene and plagioclase separated from 31Oligocene flood basalts and rhyolites from Yemen display smallbut significant variations (5·1–6·2  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号