首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   3篇
地球物理   2篇
地质学   1篇
  2018年   2篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
2.
We investigate the effects of an isolated meso-\(\gamma \)-scale surface heterogeneity for roughness and albedo on the atmospheric boundary-layer (ABL) height, with a case study at a semi-arid forest surrounded by sparse shrubland (forest area: \(28~\text{ km }^2\), forest length in the main wind direction: 7 km). Doppler lidar and ceilometer measurements at this semi-arid forest show an increase in the ABL height over the forest compared with the shrubland on four out of eight days. The differences in the ABL height between shrubland and forest are explained for all days with a model that assumes a linear growth of the internal boundary layer of the forest through the convective ABL upwind of the forest followed by a square-root growth into the stable free atmosphere. For the environmental conditions that existed during our measurements, the increase in ABL height due to large sensible heat fluxes from the forest (\(600~\text {W~m}^{-2}\) in summer) is subdued by stable stratification in the free atmosphere above the ABL, or reduced by high wind speeds in the mixed layer.  相似文献   
3.
This paper presents a calibration model for CE-QUAL-W2. CE-QUAL-W2 is a two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature–nutrient–algae–dissolved oxygen–organic matter and sediment relationships. The proposed methodology is a combination of a ‘hurdle-race’ and a hybrid Genetic-k-Nearest Neighbor algorithm (GA-kNN). The ‘hurdle race’ is formulated for accepting–rejecting a proposed set of parameters during a CE-QUAL-W2 simulation; the k-Nearest Neighbor algorithm (kNN)—for approximating the objective function response surface; and the Genetic Algorithm (GA)—for linking both. The proposed methodology overcomes the high, non-applicable, computational efforts required if a conventional calibration search technique was used, while retaining the quality of the final calibration results. Base runs and sensitivity analysis are demonstrated on two example applications: a synthetic hypothetical example calibrated for temperature, serving for tuning the GA-kNN parameters; and the Lower Columbia Slough case study in Oregon US calibrated for temperature and dissolved oxygen. The GA-kNN algorithm was found to be robust and reliable, producing similar results to those of a pure GA, while reducing running times and computational efforts significantly, and adding additional insights and flexibilities to the calibration process.  相似文献   
4.
Afforestation in semi-arid regions can potentially enhance the global carbon sink by increasing the terrestrial biomass. However, the survival of planted forests under such extreme environmental conditions is not guaranteed a priori, and critically depends on the surface–atmosphere exchange of energy. We investigate the pine forest Yatir in Israel, an example of a man-made semi-arid ecosystem, by means of large-eddy simulations. We focus on the interaction between surface–atmosphere exchange and secondary circulations that couple the isolated forest to the surrounding shrubland. The large-eddy simulations feature a grid resolution that resolves the forest canopy in several layers, and are initialized by satellite data and Doppler lidar, eddy-covariance and radiosonde measurements. We perform three large-eddy simulations with different geostrophic wind speeds to investigate the influence of those wind speeds on the surface–atmosphere exchange. We reproduce the measured mean updrafts above the forest and mean downdrafts above the shrubland, which increase in strength with decreasing geostrophic wind speed. The largest updrafts emerge above the older, denser part of the forest, triggering secondary circulations. The spatial extent of these circulations does not cover the entire forest area, although we observe a reduced aerodynamic resistance in the regions of updraft. Our simulations indicate that the enhanced surface–atmosphere exchange of the Yatir forest is not sufficient to compensate for the increased net radiation, due to the lower albedo of the forest with respect to the surroundings, resulting in higher air temperatures inside the forest. However, the difference between the forest and shrubland temperatures decreases with increasing geostrophic wind speed due to reduction in the aerodynamic resistance.  相似文献   
5.
Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHT values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of δ11B depletion and δ18O enrichment under reduced pH, whereas the δ13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal δ11B values plot above seawater δ11B vs. pH borate fractionation curves calculated using either the theoretically derived αB value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical αB value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective αB must be greater than 1.0200 in order to yield calculated coral skeletal δ11B values for pH conditions where Ωarag ? 1. The δ11B vs. pH offset from the seawater δ11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ13C and δ18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.  相似文献   
6.
Groundwater microbial community samples are traditionally collected using pumping techniques optimized for groundwater chemistry assessment, although the impact of groundwater pumping parameters on apparent bacterial community structures (BCSs) is not really known. We therefore studied the impact of pumping lift, flow regime, and tubing material on BCS, which were analyzed by terminal‐restriction fragment length polymorphism (T‐RFLP). Ruzicka dissimilarity coefficients were calculated between T‐RFLP profiles to assess disparities between BCS. Variations in pumping lift, flow regime, and tubing material did not affect the apparent BCS in experiments using a homogenous water system under laboratory conditions showing that the conditions within the tube had no detectable effect on BCS. However, pumping groundwater from aquifer monitoring wells at different flow rates in the field revealed a significant impact on the apparent BCS. Water samples collected from fine sediment were the most affected by the pumping flow rate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号