首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   5篇
地质学   2篇
  2022年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement with other numerical results (Boundary Element Method) and experimental ones is fully satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance. To cite this article: J.-F. Semblat et al., C. R. Geoscience 335 (2003).  相似文献   
2.
The work presented in this paper lies under the scope of a research program aiming to assess the impact of deep coal mining induced vibrations on the surface constructions. The concerned section of the program is dedicated to the study of geological site effects and their influence on the mining induced vibrations for which the experimental investigations have been carried out and developed in this paper (Part 1). The empirical methods based on H/V spectral ratios have been applied on data sets provided from mining induced vibrations recorded within private residences above the deep coalmine as well as complementary measurements of ambient noise. The results evidence an amplified zone in the southern part of the Gardanne basin where drilling data confirmed the presence of particularly fractured and soft stratigraphic units. This joint analysis of induced seismicity and ambient noise enabled to validate the method based on H/V ratios applied to the mining context.  相似文献   
3.
The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared with experimental results. The experimental results are obtained thanks to real earthquakes (weak motion) and microtremor measurements. The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping.In this specific area of Nice, experimental measurements obtained for weak motion lead to strong site effects. A one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid with Zener type behaviour (standard solid). The influence of frequency and incidence is analysed. The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. The boundary element method leads to amplification values very close to the actual ones and much larger than those obtained in the 1D case. Two-dimensional basin effects are then very strong and are well reproduced numerically.  相似文献   
4.
The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (boundary element method). Two main cases are considered: a shallow deposit in the centre of Nice (France) [Soil Dyn. Earthquake Engng 19 (2000) 345] and a deep irregular basin in Caracas (Venezuela) [Comput. Geotech. 29 (2002) 573].

The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site.

Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion versus depth dependence. This is of great interest for the analysis of seismic response of underground structures. The form and the depth of alluvial deposits are then found to have a great influence on the location of maximum amplification on the surface but also inside the deposit for deep irregular basins. It is essential for the analysis of the seismic response of both surface and underground structures.  相似文献   

5.
This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in the previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the boundary element method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al. [1]) is modeled numerically by BEM. The amplification phenomena characterized numerically for the induced vibrations are found to be compatible with the experimental findings such as: amplification level, frequency range and location. Finally, the whole work was necessary to fully assess the propagation and amplification of mine induced vibrations. The numerical results quantifying amplification can also be used to study other coal basins or various types of alluvial sites.  相似文献   
6.
7.
Acta Geotechnica - During recent seismic events, such as 2010 Darfield and 2016 Ecuador earthquakes, widespread liquefaction has been observed in sand deposits with silt content. Nevertheless, the...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号