首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
地质学   10篇
自然地理   1篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  1998年   2篇
  1994年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The Cretaceous gabbroic to granitic intrusive rocks of the Tehachapi Mountains were emplaced at depths of 25–30 km and thus afford a view of deep processes in the Sierra Nevada batholith. They consist of the 115 Ma Tehachapi suite and the 100 Ma Bear Valley suite; new zircon U-Pb age data reveal the presence of the latter as far west as Grapevine Canyon. The Nd, Sr, Pb, and O isotopic whole-rock data and zircon Pb inheritance patterns for the bulk of the suites suggest an origin by mixing between depleted mantlederived magmas and metasedimentary material with a substantial component of old continental material. However, this mixing is not evident in variations between isotopic ratios and chemical and lithologic parameters. This implies that isotopic hybridization of magmas took place deeper than 30 km, and that fractionation processes are likely responsible for the bulk of the chemical variation in this part of the Sierra Nevada batholith. Consideration of the isotopic data in the context of the Sierra Nevada batholith as a whole suggests that the well-known east-to-west isotopic gradients in the batholith may reflect a change in the average isotopic character of the preintrusive frame-work rather than a change in amount of crustal component. On the other hand, the lack of areal gradients in Sr and Nd isotopic ratios in the main study area may indicate a lack of pronounced gradation at deep levels, at least within the western batholith.  相似文献   
2.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   
3.
4.
We provide data on the geochemical and isotopic consequences of nonmodal partial melting of a thick Jurassic pelite unit at mid-crustal levels that produced a migmatite complex in conjunction with the intrusion of part of the southern Sierra Nevada batholith at ca. 100 Ma. Field relations suggest that this pelitic migmatite formed and then abruptly solidified prior to substantial mobilization and escape of its melt products. Hence, this area yields insights into potential mid-crustal level contributions of crustal components into Cordilleran-type batholiths. Major and trace-element analyses in addition to field and petrographic data demonstrate that leucosomes are products of partial melting of the pelitic protolith host. Compared with the metapelites, leucosomes have higher Sr and lower Sm concentrations and lower Rb/Sr ratios. The initial 87Sr/86Sr ratios of leucosomes range from 0.7124 to 0.7247, similar to those of the metapelite protoliths (0.7125–0.7221). However, the leucosomes have a much wider range of initial εNd values, which range from −6.0 to −11.0, as compared to −8.7 to −11.3 for the metapelites. Sr and Nd isotopic compositions of the leucosomes, migmatites, and metapelites suggest disequilibrium partial melting of the metapelite protolith. Based on their Sr, Nd, and other trace-element characteristics, two groups of leucosomes have been identified. Group A leucosomes have relatively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (0.15<Rb/Sr<1.0), and initial εNd values. Group B leucosomes have relatively low Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (<0.15), and initial εNd values. The low Rb concentrations and Rb/Sr ratios of the group B leucosomes together suggest that partial melting was dominated by water-saturated or H2O-fluxed melting of quartz + feldspar assemblage with minor involvement of muscovite. Breakdown of quartz and plagioclase with minor contributions from muscovite resulted in low Rb/Sr ratios characterizing both group A and group B leucosomes. In contrast, group A leucosomes have greater contributions from K-feldspar, which is suggested by: (1) their relatively high K concentrations, (2) positive or slightly negative Eu anomalies, and (3) correlation of their Pb and Ba concentrations with K2O contents. It is also shown that accessory minerals have played a critical role in regulating the partitioning of key trace elements such as Sm, Nd, Nb, and V between melt products and residues during migmatization. The various degrees of parent/daughter fractionations in the Rb–Sr and Sm–Nd isotopic systems as a consequence of nonmodal crustal anatexis would render melt products with distinct isotopic signatures, which could profoundly influence the products of subsequent mixing events. This is not only important for geochemical patterns of intracrustal differentiation, but also a potentially important process in generating crustal-scale as well as individual pluton-scale isotopic heterogeneities.  相似文献   
5.
以美国内华达山脉复合岩基为例,系统评述了与大型花岗岩基的形成、演化相关的深部地球动力学过程及构造地貌学响应。在大陆岛弧环境下,基性岩浆的底侵作用促使下地壳发生角闪岩脱水部分熔融,在岩基根部形成高密度的石榴辉石岩,岩基根部最终发生重力失稳,形成滴水构造;在地貌上反映为滴水构造对应区域的沉降和相应的张性构造,在岩浆作用上则表现为软流圈地幔上涌和残余富集岩石圈地幔的低程度部分熔融,形成钾质火山岩。这种高度动态的深部动力学过程是维持大型花岗岩基地区较高高程或促使这些区域高程骤然增加的重要因素。  相似文献   
6.
变泥质岩递进部分熔融作用的构造物理学效应   总被引:1,自引:0,他引:1  
在南内华达岩基中,晚中生代花岗岩的侵位导致表壳岩广泛的变质及部分熔融,形成混合岩杂岩体。对伊萨贝拉湖南羊圈混合岩杂岩体构造的野外观测和应变测量表明:①变泥质混合岩和鹅卵石砾岩记录了类似强度的应变;②变泥质岩发生了递进部分熔融,表现为离羊圈花岗闪长岩岩体的距离越远,部分熔融程度越低;③随部分熔融程度的变化,变泥质岩的应变承载构造也逐渐从混合岩带的弱相承载构造(IWL)往强相承载构造(LBF)过渡;④在同岩浆构造作用中,浅色体的流变学性质与鹅卵石砾岩中泥质组分相当,为应变的主要承载体。该结果表明:在高级变质岩区中,部分熔融程度是否足够高及熔体能否形成互相链接的网络,是高级变质岩的流变学强度发生突降、深部岩石发生侧向流动的前提。  相似文献   
7.
下地壳拆沉作用及大陆地壳演化   总被引:13,自引:0,他引:13  
讨论了下地壳拆沉作用的地球化学示踪方法,并以近来对秦岭-大别造山带和美国西部内华达岩基地区的研究成果为例,说明了下地壳拆沉在两地区壳-幔演化方面可能起的重要作用。  相似文献   
8.
Advances in field observations and experimental petrology on anatectic products have motivated us to investigate the geochemical consequences of accessory mineral dissolution and nonmodal partial melting processes. Incorporation of apatite and monazite dissolution into a muscovite dehydration melting model allows us to examine the coupling of the Rb-Sr and Sm-Nd isotope systems in anatectic melts from a muscovite-bearing metasedimentary source. Modeling results show that (1) the Sm/Nd ratios and Nd isotopic compositions of the melts depend on the amount of apatite and monazite dissolved into the melt, and (2) the relative proportion of micas (muscovite and biotite) and feldspars (plagioclase and K-feldspar) that enter the melt is a key parameter determining the Rb/Sr and 87Sr/86Sr ratios of the melt. Furthermore, these two factors are not, in practice, independent. In general, nonmodal partial melting of a pelitic source results in melts following one of two paths in εNd-87Sr/86Sr ratio space. A higher temperature, fluid-absent path (Path 1) represents those partial melting reactions in which muscovite/biotite dehydration and apatite but not monazite dissolution play a significant role; the melt will have elevated Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values. In contrast, a lower temperature, fluid-fluxed path (Path 2) represents those partial melting reactions in which muscovite/biotite dehydration plays an insignificant role and apatite but not monazite stays in the residue; the melt will have lower Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values than its source. The master variables controlling both accessory phase dissolution (and hence the Sm-Nd system), and melting reaction (and hence the Rb-Sr systematics) are temperature and water content. The complexity in Sr-Nd isotope systematics in metasediment-derived melts, as suggested in this study, will help us to better understand the petrogenesis for those granitic plutons that have a significant crustal source component.  相似文献   
9.
Distinct ophiolitic assemblages occur as oceanic basement within three of the four regional tectonic belts of the northern Sierra Nevada. New U/Pb zircon, Sm/Nd and Rb/Sr data are presented for each assemblage, providing critical geochronological and isotopic constraints on the petrogenesis and tectonic evolution of the ophiolitic and associated ensimatic assemblages. Ophiolitic assemblages include from west to east the Smartville complex, Central belt and Feather River belt. The Smartville complex represents an island arc volcanic-plutonic sequence with a major late-stage sheeted dike swarm. The Sm/Nd systems from a wide compositional spectrum of rocks record a 178±21 Ma petrogenetic age and an Nd(T)=+9.2±0.6. Zircon U/Pb systems on an uppermost dacite yield a 164±2 Ma age, and on a number of plagiogranite screens and dikes from the sheeted complex 162±1 Ma ages. The Central and Feather River belts are structurally complex polygenetic assemblages. The U/Pb zircon and Sm/Nd systems record major 205 Ma and 315 Ma petrogenetic events respectively both involving depleted mantle derived magmas. Such magmatism probably occurred in marginal basin/transform systems developed within an older oceanic depleted mantle basement regime. Both Sm/Nd and U/Pb zircon systems show local components of Proterozoic sialic material. The sialic contaminants were probably introduced into the system as craton derived detritus. It is doubtful that any of the ophiolitic assemblages studied represent genetically related crust-upper mantle sequences generated during the development of new oceanic lithosphere. Integration of the geochronological data with geological relations reveals a pattern of petrogenesis and tectonics whereby progressively younger ensimatic terranes were added to the continental margin through time by plate convergence, and were ultimately welded into North American sial by a crosscutting batholithic belt. This accretionary pattern is reflected in both the protolith ages and deformation-metamorphic ages of each of the regional belts which progressively young westward. Crustal components of the accreted ensimatic terranes grew by mainly basaltic igneous activity within island arc, marginal basin and leaky transform systems adjacent to the continent edge prior to final tectonic accretion. Such complexities are suggested to be typical of Cordilleran-type ophiolites and representative of the circum-Pacific erogenic style.  相似文献   
10.
Sm-Nd whole-rock and mineral data for the Kings River ophiolite define two isochrons of 485±21 Ma and 285±45 Ma age with Nd (483)= +10.7±0.5 and Nd (285)= +9.9±1.1, respectively. The 483 Ma isochron is defined by samples of the main igneous construct. Samples from crosscutting diabase dikes and flaser gabbro sheets within the peridotite unit yield the 285 Ma isochron. The 483 Ma data provide the first evidence of lower Paleozoic oceanic crust in the Sierran ophiolite belt. New U-Pb analyses of zircons from a plagiogranite lying on the 483 Ma Sm-Nd isochron yield upper and lower intercepts with the concordia of 430 –60 +200 and 183±15 Ma. Published zircon ages have underestimated the primary age of the ophiolite by 200–300 m.y. due to the effects of polymetamorphism. The 483 Ma samples have initial 87Sr/86Sr=0.7023–0.7030, 206Pb/204Pb=17.14–17.82, 207Pb/204Pb=15.37–15.52, 208Pb/204Pb=36.80–37.38. The 285 Ma samples have similar initial 87Sr/86Sr, but more radiogenic Pb. The range in Sr and Pb compositions is probably due to introduction of radiogenic Sr and Pb during multiple post-emplacement metamorphic events. The high Nd, low 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb of the least disturbed samples are clearly diagnostic of a midocean ridge origin for the 483 Ma portion of the ophiolite. Igneous activity at 285 Ma is thought to have occurred in an arc or back-arc setting, or perhaps along a leaky transform. The initial Nd (483)=+10.7 is indistinguishable from that of the similar age Trinity Peridotite (Jacobsen et al. 1984). This value is the highest yet reported for the Mesozoic or Paleozoic depleted mantle and requires either a mantle source that was depleted 850 m.y. earlier than average or a source more highly depleted than average. Alternatively, if such values were more typical of the early Paleozoic mantle than is currently thought, then there has been little evolution of the depleted mantle over the last 500 m.y. This requires that the modern mantle has been refluxed by material with low Nd, such as continental crust.Division Contribution # 4302 (530)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号