首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   6篇
自然地理   1篇
  2010年   1篇
  2004年   1篇
  2003年   3篇
  1998年   1篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Natural fluid phases at high temperatures and low pressures   总被引:1,自引:0,他引:1  
Gas phases at low pressures and high (magmatic) temperatures have certain peculiar properties. The fluid is mainly water vapour, which is usually observed during discharging of crystal magmatic melts. At >700°C and <100 bar these peculiar properties include: formation of near ‘dry' salt melts as second fluid phase, very strong fractionation of hydrolysis products between vapour and melts, subvalence state of metals during transport processes, and high sensitivity of the gas to conditions of sublimate precipitation. Phase diagram analysis as well as results of field and laboratory experiments are presented in this article. The processes could be a model for industrial technologies to clean wastes from toxic, rare and heavy metals. Transport forms of some elements in volcanic gases are very similar to the species which were formed first in the protosolar nebula.  相似文献   
2.
 Recently, the Hy-2a hydrous olivine (MgH2 SiO4)·3(Mg2SiO4) occurring as nanometre-sized inclusions in mantle olivines has been found by TEM, and has been suggested to be a new DHMS phase (Khisina et al. 2001). A model of the crystal structure of Hy-2a has been proposed as a 2a-superstructure of olivine with one Me2+ -vacant octahedral layer in the (1 0 0) plane per Hy-2a unit cell (Khisina and Wirth 2002). In the present study the crystal structure of Hy-2a hydrous olivine is optimized by ab initio calculations. The aims of this study are: (1) verification of the suggested models of Hy-2a hydrous olivine structure; (2) calculation of the most stable configurations for Hy-2a structure with minimum static lattice energy, by assuming a possible formation of Me2+ vacancies in either M1 or M2 octahedral sites; (3) determination of the position of protons and hydrogen bonds in the Hy-2a structure. Several different possible configurations of the Hy-2a structure are optimized. The results support the idea of a stable olivine structure with ordered planar-segregated OH-bearing defects oriented parallel to (1 0 0). The data obtained indicate a preferred stability of the Hy-2a structure with the protons associated with M1 vacancies and bonded with O1 and O2 oxygen sites. The relative energy values of the optimized Hy-2a structure configurations correlate as a rule with the average shifts of atoms from their positions in pure forsterite structure. Received: 7 February 2002 / Accepted: 23 October 2002  相似文献   
3.
The uptake of Nd(III) by the crystalline C–S–H phases 11 Å tobermorite and xonotlite has been investigated by the combined use of wet chemistry techniques, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray diffraction (XRD) in combination with Rietveld refinement. The results from XRD and EXAFS allowed the different modes of Nd–Ca substitution in tobermorite and xonotlite to be distinguished from each other. Wet chemistry and EXAFS data showed that the formation of any Nd solid phase with fixed stoichiometry could be ruled out. XRD studies on the samples with high Nd loading (350 μmol Nd/g solid phase) further showed that Nd was bound in the structure of C–S–H phases. The EXAFS data suggested that Nd could form several species on xonotlite and tobermorite at low loadings (7–35 μmol Nd/g solid phase). Neodymium was predominantly bound on the external surface of both crystalline C–S–H phases after 1 day of reaction time and predominantly incorporated in the Ca layers of the crystalline C–S–H phases in the long run (?60 days reaction time). The latter process was faster at low Nd loadings and was apparently controlled by re-crystallization of the C–S–H phases. Neodymium incorporation was accompanied by the release of “zeolitic” water (water molecules in the interlayer of C–S–H) and bridging Si tetrahedra, reflected by the formation of more disordered structures in both C–S–H phases. The Nd retention model proposed in this study helps to improve understanding of the immobilization of trivalent lanthanides and actinides in cementitious materials. This knowledge is essential for long-term predictions of radionuclide retention in conjunction with a more detailed assessment of the safe disposal of actinides in the cementitious near field of a repository for radioactive waste.  相似文献   
4.
The occurrence of infections with Trichinella sp. in polar bears (Ursus maritimus) from northeastern Greenland has been studied by examination of muscle samples, mainly diaphragm, from 38 animals shot during the period 1983-1987. Trichinella larvae were demonstrated in 12 bears (32%) with an average of 9.2 larvae/g muscle tissue. No bears younger than three years old were infected. The prevalence of Trichinella among bears of the age group 3-4 years was 25% and 53% among older animals.  相似文献   
5.
Phase equilibria in the system CaO–MgO–SiO2–CO2–H2O–NaCl are calculated to illustrate phase relations in metacarbonates over a wide-range of P–T–X[H2O–CO2–NaCl] conditions. Calculations are performed using the equation of state of Duan et al. (Geochim Cosmochim Acta 59:2869–2882, 1995) for H2O–CO2–NaCl fluids and the internally consistent data set of Gottschalk (Eur J Mineral 9:175–223, 1997) for thermodynamic properties of solids. Results are presented in isothermal-isobarical plots showing stable mineral assemblages as a function of fluid composition. It is shown that in contact-metamorphic P–T regimes the presence of very small concentrations of NaCl in the fluid causes almost all decarbonation reactions to proceed within the two fluid solvus of the H2O–CO2–NaCl system. Substantial flow of magma-derived fluids into marbles has been documented for many contact aureoles by shifts in stable isotope geochemistry of the host rocks and by the progress of volatile-producing mineral reactions controlled by fluid compositions. Time-integrated fluid fluxes have been estimated by combining fluid advection/dispersion models with the spatial arrangement of mineral reactions and isotopic resetting. All existing models assume that minerals react in the presence of a single phase H2O–CO2 fluid and do not allow for the effect that fluid immiscibility has on the flow patterns. It is shown that fluids emanating from calc-alkaline melts that crystallize at shallow depths are brines. Their salinity may vary depending mainly on pressure and fraction of crystallized melt. Infiltration-driven decarbonation reactions in the host rocks inevitably proceed at the boundaries of the two fluid solvus where the produced CO2 is immiscible and may separate from the brine as a low salinity, low density H2O–CO2 fluid. Most parameters of fluid–rock interaction in contact aureoles that are derived from progress of mineral reactions and stable isotope resetting are probably incorrect because fluid phase separation is disregarded.  相似文献   
6.
Based on the thermodynamic perturbation theory an equation of state (EOS) for molecular fluids has been formulated which can be used for many fluid species in geological systems. The EOS takes into account four substance specific parameters. These are the molecular dipole moment, the molar polarizability and the two parameters of the Lennard-Jones potential. For many fluids these parameters can be evaluated directly or indirectly from experimental measurements. In the absence of direct experimental determinations, as a first approximation, for a pure fluid the parameters of the Lennard-Jones potential can be evaluated using the critical temperature and the critical density if for polar molecules in addition the dipole moment is known with reasonable accuracy. The EOS with its model potential has the appropriate asymptotic behaviour at high pressures and temperatures and can be used to calculate both vapor-liquid equilibria and thermodynamic properties of single phase fluids up to at least 10 GPa and 2000 K. Currently, parameters for 98 inorganic and organic compounds are available. In this article the EOS for pure fluids is presented. In a further communication the EOS is extended to fluid mixtures (Churakov and Gottschalk, 2003).  相似文献   
7.
The equation of state (EOS) for 98 pure organic and inorganic fluids formulated by Churakov and Gottschalk (2003) is extended to complex fluid mixtures. For the calculation of the thermodynamic properties of mixtures, theoretical combining rules from statistical mechanics are used. These mixing rules do not involve any empirical parameters. The properties of the fluid mixtures are directly derived from those of the pure constituents. As an example we show that the EOS describes accurately the thermodynamic relations in the H2O-CO2 binary at high pressures and temperatures. At subcritical conditions the EOS is able to reproduce accurately the phase relations within mixtures of non-polar fluids. In particular the EOS predicts phase separations within various fluid mixtures of polar and non-polar molecules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号