首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   5篇
地质学   8篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2010年   2篇
  2009年   2篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Site investigation and evaluation of properties of soil or rock are important aspects of geotechnical design. Determination of the ground stiffness is one of the important parameters in geotechnical engineering. Since the measurement of shear modulus is very sensitive to soil disturbance, especially for sand, determination of the stiffness of soil in the field is more reliable than in laboratory tests on sampled specimens. Measurement of shear modulus is one of the most common applications of self-boring pressuremeter testing. As an in situ device, the pressuremeter provides a unique method for assessing directly the in situ shear modulus of a soil. This paper describes a laboratory study of silica sand stiffness, which varies with stress level and strain amplitude. The results show that the elastic shear modulus value is mainly dependent on the value of the mean effective stress and relative density.  相似文献   
2.
The results of geotechnical explorations, engineering geological investigation (including laboratory and in situ tests) and field observations have been used, along with borehole logging charts, to obtain the rock mass geotechnical data. Based on the data, the rock mass along the Sabzkuh water conveyance tunnel route was classified by rock mass rating (RMR), Q-system (Q), rock mass index (RMi) and geological strength index (GSI) (3 methods). A new series of correlations were established between the systems based on the data collected from the study area. These relationships were then compared with those reported in the literature, and two new relations were recommended. The classifications were utilized to calculate mechanical properties (rock mass strength and deformation modulus) of the rock mass along the tunnel according to available empirical relations, and to distinguish the upper-bound and lower-bound relations.  相似文献   
3.
4.
The Siruyeh landslide occurred at the eastern side of the Siruyeh valley, 22 km west of Semirom city, south of Esfahān on 25th March, 2005 with large dimensions (2,400 m long, 450 m wide with total area of 1 km2). The sliding mass blocked the Siruyeh River making a 35-m-high natural dam and 6-acre lake 570,000 m3 in volume that poses a potential threat for the area. The landslide occurred in soil and intensely weathered marls of the Tarbur and Kashkan Formations (upper Cretaceous–Paleocene age). The overall comparison and interpretation of the gathered evidence from satellite images, field trips, and laboratory tests show that the most important factors involved in triggering the Siruyeh landslide in order of importance are heavy precipitation and snow melt and intense concentration of faults and fractures as well as weathered and weak lithology.  相似文献   
5.
In this paper, based on theoretical estimation of the achievable electric fields during the physical development process of a long spark under different conditions, we show that the encounter of negative and positive streamer fronts just before the final breakdown is one scenario, under which the observed X-ray bursts in long sparks is highly possible. Our calculations show that for example in an 80 cm long rod–sphere air gap at atmospheric pressure with negative lightning impulse breakdown voltage of about 925 kV, electrons are accelerated to values in the range of 100–300 keV during the encounter. Subsequently, these electrons gain more energy moving through the potential gradient of the positive streamer region. The total gain of energy by electrons may reach 300–500 keV. The results also show that negative discharges can produce more energetic electrons than positive. If the suggested mechanism of X-ray production in long sparks is correct, then the X-ray burst may consist of several pulses closely spaced in time. Time resolved photography in simultaneous measurement of X-rays would be able to confirm this prediction.  相似文献   
6.
One of the most important steps in designing underground structures is the evaluation of ground conditions in terms of squeezing potential and behavior of the geological structures. Generally, constructing a tunnel in the squeezing condition is a very slow and difficult task. Therefore, recognition and evaluation of the squeezing potential is very important in selecting a suitable excavation method and support, especially in weak rocks. This research is concerned with the assessment of squeezing potential along tunnel T4 of water conveyance system from Azad dam to Ravansar plain with the length of 11,380 m, located between Kurdistan and Kermanshah provinces, west of Iran. This tunnel is in an almost NS direction and flows through the contact zone of Iran and Arabic plates. According to the engineering geological investigations, the squeezing potential has been recognized as the most important difficulty in the excavation of tunnel T4. This conclusion can be explained by the several indicators including lithology, high disintegration of rock masses, alteration of rocks on the border of Iran and Arabic plates’ contact zone, low rock mass quality, high overburden, and highly jointed rock masses in a shuffle tectonic condition. This paper deals with the engineering geological and geomechanical properties of rock masses. Then, it evaluates squeezing intensity using empirical, semi-empirical, and analytical properties methods. The analysis conducted in these work shows that the tunnel excavation would encounter squeezing problems, which is most severe in region 2 due to the effects of the major young Zagros fault.  相似文献   
7.
The annual yield of different plant species is affected by various parameters such as soil and water properties, climatic variables, etc. Due to the importance of the role of climatic variables on...  相似文献   
8.
The focus of this study is the empirical hydromechanical behaviour of the Ostur dam site rock mass. The area surrounding the dam mostly consists of diorite and andesite, with primary fractures and hydrothermal veins. The hydromechanical behaviour of the rocks was determined using 500 water pressure tests at 5-m intervals. The hydrothermal veins and 2,739 discontinuities were studied and mapped along the dam axis. As a result, it was possible to design an optimum grout curtain for the dam axis. The empirical hydromechanical behaviour of the rock was studied to determine water flow and grout pressurised flow during the field tests that were conducted on two representative A-series grouting operation boreholes (one borehole for each abutment). The secondary permeability index (SPI), Lugeon value (LU), rock quality designation (RQD) and cement take (CT) values are presented and compared in this article. It is concluded that permeability and groutability are mostly controlled by the specifications and characteristics of the veins, especially in shallow areas and lower depths. A procedure is proposed based on a comparison of the trends in the RQD–SPI and LU–CT, and it is suggested that the areas with diverging trends require no treatment and that those with converging trends require heavy treatment. Additional complementary studies that were conducted during the construction stage have validated these results.  相似文献   
9.
Geotechnical and Geological Engineering - In the present paper, the effect of the depth of the bedrock layer on the land subsidence of the Isfahan plain was studied. The geological bedrock layer...  相似文献   
10.
Multiple-point geostatistical simulation is used to simulate the spatial structures of geological phenomena. In contrast to conventional two-point variogram based geostatistical methods, the multiple-point approach is capable of simulating complex spatial patterns, shapes, and structures normally observed in geological media. A commonly used pattern based multiple-point geostatistical simulation algorithms is called FILTERSIM. In the conventional FILTERSIM algorithm, the patterns identified in training images are transformed into filter score space using fixed filters that are neither dependent on the training images nor on the characteristics of the patterns extracted from them. In this paper, we introduce two new methods, one for geostatistical simulation and another for conditioning the results. At first, new filters are designed using principal component analysis in such a way to include most structural information specific to the governing training images resulting in the selection of closer patterns in the filter score space. We then propose to combine adaptive filters with an overlap strategy along a raster path and an efficient conditioning method to develop an algorithm for reservoir simulation with high accuracy and continuity. We also combine image quilting with this algorithm to improve connectivity a lot. The proposed method, which we call random partitioning with adaptive filters simulation method, can be used both for continuous and discrete variables. The results of the proposed method show a significant improvement in recovering the expected shapes and structural continuity in the final simulated realizations as compared to those of conventional FILTERSIM algorithm and the algorithm is more than ten times faster than FILTERSIM because of using raster path and using small overlap specially when we use image quilting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号