首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  国内免费   5篇
地球物理   11篇
地质学   17篇
海洋学   4篇
天文学   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   2篇
  2000年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Fine-grained peraluminous synkinematic leuco-monzogranites (SKG), of Cambro-Ordovician age, occur as veins and sills (up to 20–30 m thick) in the Deep Freeze Range, within the medium to high-grade metamorphics of the Wilson Terrane. Secondary fibrolite + graphite intergrowths occur in feldspars and subordinately in quartz. Four main solid and fluid inclusion populations are observed: primary mixed CO2+H2O inclusions + Al2SiO5 ± brines in garnet (type 1); early CO2-rich inclusions (± brines) in quartz (type 2); early CO2+CH4 (up to 4 mol%)±H2O inclusions + graphite + fibrolite in quartz (type 3); late CH4+CO2+N2 inclusions and H2O inclusions in quartz (type 4). Densities of type 1 inclusions are consistent with the crystallization conditions of SKG (750°C and 3 kbar). The other types are post-magmatic: densities of type 2 and 3 inclusions suggest isobaric cooling at high temperature (700–550°C). Type 4 inclusions were trapped below 500°C. The SKG crystallized from a magma that was at some stage vapour-saturated; fluids were CO2-rich, possibly with immiscible brines. CO2-rich fluids (±brines) characterize the transition from magmatic to post-magmatic stages; progressive isobaric cooling (T<670°C) led to a continuous decrease off O 2 can entering in the graphite stability field; at the same time, the feldspars reacted with CO2-rich fluids to give secondary fibrolite + graphite. Decrease ofT andf O 2 can explain the progressive variation in the fluid composition from CO2-rich to CH4 and water dominated in a closed system (in situ evolution). The presence of N2 the late stages indicates interaction with external metamorphic fluids.Contribution within the network Hydrothermal/metamorphic water-rock interactions in crystalline rocks: a multidisciplinary approach on paleofluid analysis. CEC program: Human Capital and Mobility  相似文献   
2.
3.
4.
The point of zero charge of forsterite shifts from an estimated 8.9 for the unaltered mineral to 8.4 and 8.0, respectively, after being weathered artificially for 1 h and 4 h. These results corroborate the presence of magnesium-deficient surfaces on the weathered minerals, also indicated by chemical analyses of the solutions. H+ and OH? are shown to be potential-determining ions in this system  相似文献   
5.
6.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
Minerals, fluid inclusions and stable isotopes have been studiedin ultrahigh-pressure (UHP) OH-rich topaz–kyanite quartzitesfrom Hushan (west of Dongai), in southern Sulu (China). Thequartzites underwent a metamorphic evolution characterized bya peak stage (3·5 GPa and 730–820°C) with theanhydrous assemblage coesite + kyanite I, followed by an earlynear-isothermal decompression stage (2·9 GPa and 705–780°C)with growth of kyanite II, muscovite, and OH-rich topaz, andby decompression-cooling stages, represented by paragonite (1·9GPa and 700–780°C) and pyrophyllite (0·3 GPaand 400°C) on kyanite (I and II) and OH-rich topaz, respectively.These rocks may exhibit unusually low 18O and D values acquiredbefore undergoing UHP metamorphism. Five distinct fluid generationsare recognized. Type I: concentrated peak solutions rich inSi, Al, and alkalis, present within multiphase inclusions inkyanite I. Type II: CaCl2-rich brines present during the growthof early retrograde OH-rich topaz. Type III, IV, and V: lateaqueous fluids of variable salinity, and rare CO2 present duringamphibolite- and late greenschist-facies conditions. A numberof conclusions may be drawn from these relationships that havean effect on fluid evolution in deeply subducted continentalrocks. (1) At a pressure of about 3·5 GPa alkali–alumino-silicateaqueous solutions, with compositions intermediate between H2Ofluid and melt (H2O > 25 and 50 wt %) evolved from quartzites,probably generated by dehydration reactions. (2) During earlydecompression stages, at the transition from UHP to high-pressure(2·9 GPa) conditions, brines of external origin withhigher water contents (82 wt % H2O) initiated the growth ofOH-rich topaz and muscovite. (3) The subsequent decompression,at P <2 GPa, was defined by a limited circulation of NaClaqueous fluids, and CO2 infiltration. Overall, fluid inclusionsand stable isotopes highlight a metamorphic fluid–rockinteraction characterized by internally derived intermediateaqueous solutions at UHP, followed by infiltration of Cl-richbrines with higher water activities. KEY WORDS: ultrahigh-pressure metamorphism; OH-rich topaz; fluid inclusions; stable isotopes; supercritical liquids  相似文献   
8.
The Kongur Shan Extensional System (KES) is a ~250 km long normal fault system that bounds the Muji–Tashkorgan basin of the Chinese Pamir. It accommodates E–W extension due to the northward indentation of the Pamir salient, and its late Miocene activity has been the focus of tectonic studies. While the KES has a main normal component, ~WNW–ESE‐striking segments have an additional right‐lateral strike‐slip component. Here, we quantify late Quaternary horizontal and vertical slip rates at three locations along the KES, where active faults cut and offset abandoned geomorphic features. We find rates of >3–4 mm a?1 (horizontal) along the western Muji fault in the north and of ~1.7 mm a?1 (vertical) and ~1 mm a?1 (horizontal) along the Kongur Shan fault in the south during the late Pleistocene. These rates are consistent with GPS and late Miocene rates, and imply that E–W extension in the Muji–Tashkorgan basin is faster in the north than in the south.  相似文献   
9.
10.
2022年1月8日01时45分,青海省海北州门源县发生了Ms 6. 9级强烈地震,震中位于青藏高原东北缘海原断裂带中西段的冷龙岭断裂附近。震后的野外现场考察表明,这次地震在海拔3500~4100 m的高原北部祁连山区形成了一系列由张裂隙、张剪裂隙、剪切裂隙、挤压鼓包和裂陷等多类型破裂雁行状组合而成的同震地表变形带,表现为左旋走滑运动性质,总长约27 km。破裂带呈NWW—SEE走向,可分为南北两支,北支沿冷龙岭断裂西段分布,南支沿托莱山断裂东端分布,与北支间隔3 km呈左阶雁行排列。根据破裂带的走向变化和阶区特征,可将破裂带分为三段:西段、中段和东段,与地表同震位移分布特征较为吻合。西段为破裂带的南支,呈N93°E走向,长约4. 5 km,最大左行水平位错约85 cm;中段为北支破裂带西侧部分,主要呈N102°E走向,长约7. 5 km,最大左行水平位错约3. 7 m;东段为北支破裂带东侧部分,走向呈N110~120°E走向,长约15 km,最大左行水平位错约3. 0 m。门源地震震级与地表破裂带分布规模和变形强度的对比,表明本次地震的震源深度较浅,可能远小于10 km深。这次门源地震的发震断裂为海原断裂带呈挤压弯曲部分的冷龙岭断裂,具有花状构造特征。由于本次地震余震向SE方向扩展,表明具有应力向东迁移趋势,因此,冷龙岭断裂东侧处在海原断裂带上1920年海原大地震与2022年门源地震之间地震空区的金强河、毛毛山和老虎山断裂未来强震危险性升高,需要重点关注。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号