首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   24篇
海洋学   1篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2004年   1篇
  2003年   5篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 93 毫秒
1.
The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust   总被引:49,自引:15,他引:49  
When basalt magmas are emplaced into continental crust, meltingand generation of silicic magma can be expected. The fluid dynamicaland heat transfer processes at the roof of a basaltic sill inwhich the wall rock melts are investigated theoretically andalso experimentally using waxes and aqueous solutions. At theroof, the low density melt forms a stable melt layer with negligiblemixing with the underlying hot liquid. A quantitative theoryfor the roof melting case has been developed. When applied tobasalt sills in hot crust, the theory predicts that basalt sillsof thicknesses from 10 to 1500 m require only 1 to 270 y tosolidify and would form voluminous overlying layers of convectingsilicic magma. For example, for a 500 m sill with a crustalmelting temperature of 850 ?C, the thickness of the silicicmagma layer generated ranges from 300 to 1000 m for countryrock temperatures from 500 to 850?C. The temperatures of thecrustal melt layers at the time that the basalt solidifies arehigh (900–950?C) so that the process can produce magmasrepresenting large degrees of partial fusion of the crust. Meltingoccurs in the solid roof and the adjacent thermal boundary layer,while at the same time there is crystallization in the convectinginterior. Thus the magmas formed can be highly porphyritic.Our calculations also indicate that such magmas can containsignificant proportions of restite crystals. Much of the refractorycomponents of the crust are dissolved and then re-precipitatedto form genuine igneous phenocrysts. Normally zoned plagioclasefeldspar phenocrysts with discrete calcic cores are commonlyobserved in many granitoids and silicic volcanic rocks. Suchpatterns would be expected in crustal melting, where simultaneouscrystallization is an inevitable consequence of the fluid dynamics. The time-scales for melting and crystallization in basalt-inducedcrustal melting (102–103 y) are very short compared tothe lifetimes of large silicic magma systems (>106 y) orto the time-scale for thermal relaxation of the continentalcrust (> l07 y). Several of the features of silicic igneoussystems can be explained without requiring large, high-level,long-lived magma chambers. Cycles of mafic to increasingly largevolumes of silicic magma with time are commonly observed inmany systems. These can be interpreted as progressive heatingof the crust until the source region is partially molten andbasalt can no longer penetrate. Every input of basalt triggersrapid formation of silicic magma in the source region. Thismagma will freeze again in time-scales of order l02–103y unless it ascends to higher levels. Crystallization can occurin the source region during melting, and eruption of porphyriticmagmas does not require a shallow magma chamber, although suchchambers may develop as magma is intruded into high levels inthe crust. For typical compositions of upper crustal rocks,the model predicts that dacitic volcanic rocks and granodiorite/tonaliteplutons would be the dominant rock types and that these wouldascend-from the source region and form magmas ranging from thosewith high temperature and low crystal content to those withhigh crystal content and a significant proportion of restite.  相似文献   
2.
Pyroclastic deposits exposed in the caldera walls of Santorini Volcano (Greece), contain several prominent horizons of coarse-grained andesitic spatter and cauliform volcanic bombs. These deposits can be traced around most of the caldera wall. They thicken in depressions and are intimately associated with ignimbrite and co-ignimbrite lithic lag breccias. They are interpreted as a proximal facies of pyroclastic flow deposits. Evidence for a flow origin includes the presence of a fine-grained pumiceous matrix, flow deformation of ductile spatter clasts, exceedingly coarse grain sizes several kilometres from any plausible vent, imbrication of flattened spatter clasts, intimate interbedding with normal pyroclastic flow deposits and the presence of inversely graded basal layers. The deposits contain hydrothermally altered, rounded lithic ejecta including gabbro nodules. The andesitic ejecta and the fine matrix are typically moderately to poorly vesicular indicating that magmatic gas had a subordinate role in the eruptive process. The andesitic clasts contain abundant angular lithic inclusions and some clasts are themselves formed of pre-existing agglutinate. We propose that these eruptions occurred when external water gained access to the vents, causing large-scale explosions which formed pyroclastic flows rich in coarse, semifluid but poorly vesicular ejecta. We postulate that large volumes of coarse pyroclastic ejecta and degassed lava accumulated in a deep crater prior to being disrupted by these large explosions to form pyroclastic flows.  相似文献   
3.
GLADSTONE  PHILLIPS  SPARKS 《Sedimentology》1998,45(5):833-843
Laboratory experiments show that the propagation and sedimentation patterns of particle-laden gravity currents are strongly influenced by the size of suspended particles. The main series of experiments consisted of fixed-volume releases of dilute mixtures containing two sizes of silicon carbide particles (25 μm and 69 μm mean diameter) within a 6-m flume. Polydisperse experiments involved mixtures of five different particle sizes and variation of the amounts of the finest and coarsest particles. All variables apart from the initial relative proportions of particles were identical in the experiments. The effects of mixing different proportions of fine and coarse particles is markedly non-linear. Adding small amounts of fine sediment to a coarse-grained gravity current has a much larger influence on flow velocity, run-out distance and sedimentation patterns than adding a small amount of coarse sediment to a fine-grained gravity current. The experiments show that adding small amounts of fine particles to a coarse-grained current results in enhanced flow velocities because the fine sediment remains suspended and maintains an excess current density for a much longer time. Thus, the distance to which coarse particles are transported increases substantially as the proportion of fines in the flow is increased. Our experiments suggest that sandy turbidity currents containing suspended fines will be much more extensive than turbidity currents composed of clean sand.  相似文献   
4.
Sedimentation from gravity currents generated by turbulent plumes   总被引:4,自引:0,他引:4  
Sedimentation from radially spreading gravity currents generated at the top of ascending sediment-laden plumes is described by a model which assumes that sediment is dispersed homogeneously by turbulence in the gravity current, resulting in an exponential decrease in the concentration of sediment with time as particles settle out of the lower boundary of the current. For radial spreading this model predicts a Gaussian distribution of sediment accumulation away from the source with an exponential constant, B, which depends on flow rate, Q, and particle settling velocity, v (B=nv/Q). In the experiments described, sedimentation occurs from gravity currents generated by ascent of buoyant, particle-laden plumes of fresh water in a tank of salty water. The sediment accumulation shows close agreement with the theoretical model, and the Gaussian decay constant, B, can be determined from a maximum in the accumulated mass of sediment per unit distance and from the slope of the line In(S/S0) = -Br2, where r is the radial distance, S is the sediment mass flux per unit area and S0 is the value of S at r=0. Data from the dispersal of volcanic ejecta from a large (c. 24 km high) plinian eruption column in the Azores also show good agreement with the theory, confirming that it is general and independent of scale and the nature of the fluid. The experimental data also show a change in sedimentation behaviour at distances from the source corresponding to the corner of the plume where it diverts into a lateral gravity current and there is an abrupt decrease in vertical velocity. Sedimentation of coarse grain sizes, between the source and the corner, occurs from the inclined plume margins and does not behave as predicted by the theoretical model.  相似文献   
5.
Experiments demonstrate that fluid escape structures can be produced as a result of unstable fluidization behaviour where a lower base layer of granular material is inhibited from fluidizing by the presence of an overlying non-fluidizing top layer. Before the base layer can fluidize the weight of the overlying material must be balanced, and this is accomplished by base layer material pressing against the bottom surface of the confining top layer forming a static layer. This static layer allows the top layer to lift away from the base layer which is then free to fluidize. A water-filled crack forms below the static layer and, as this grows, instability causes the static layer and top layer to bend and conical voids to form below the antiformal sections. Rupture occurs at the apex of the water void, allowing the underlying water and fluidizing material to burst out through the top layer. The fluidized base layer material then flows through the rupture until all of this material, except that in the static layer, is deposited above the previously overlying layer and a stable fluidization system results. The top layer material is bent upwards around the rupture, and the resulting pillar-type escape structure is preserved if flow then ceases. The vigour of the burst-out is greatest when the base layer material has a grain size 15% of the top layer material. If the base layer grain size is less than 8% of the top layer then base layer material will pass through the top layer pore spaces, without forming an escape structure. If cohesive material is present, escape structures form when a layer of fine grained cohesive material overlies a layer of cohesionless material. At low flow rates small pipes with scattered angular bends pierce the top layer, and base layer material passes through them. The base layer material is ejected on to the top layer and builds up around the mouth of each pipe to form constructional structures, sand volcanoes. This is in contrast to the cohesionless experiments, where the weight of material being deposited on the top layer caused an ejecta-filled depression to form around the rupture. If flow then ceases both the pipes and the sand volcanoes are preserved. At high flow rates, where the base layer fluidizes, the top cohesive layer becomes fragmented. Small fragments circulate within the fluidizing base layer and are preserved as floating clasts. Large fragments sink to the bottom of the fluidizing base layer. Erosion of the bottom surface of these larger fragments causes this surface to become convex downward. The experimentally derived structures are similar to pillar-type structures observed in the field and the processes described can be used to investigate the development of these structures. Fluidization experiments also demonstrate the genesis of dish structures, and the cohesive behaviour can be applied to the deformation of these structures after initial formation.  相似文献   
6.
Volcanic activity in Askja central volcano and its fissure swarmin 1875 occurred in response to a crustal rifting episode inIceland, resulting in up to 70 km lateral flow of magma withinthe crust, caldera collapse and a plinian eruption of acid magma(0·2 km3 dense-rock equivalent). Petrologic studies ofthe predominantly rhyolitic and crystal-poor ejecta reveal thata complex array of other liquid compositions was also present,including icelandite (0.75 per cent) and basalt (1.9 per cent),as well as leucocratic xenoliths of trondhjemite type. Mineralgeothermometers indicate that the rhyolite evolved at 990 to1010 °C and 0·5 Kb PH2O, the icelandite at 1005 to1020 °C and at fO2 10–10 atm. and the basalt at 1140to 1170 °C. A petrologic model of Askja in 1875 consists of a density-stratifiedmagma chamber with a rhyolitic upper part and a lower part offerrobasalt, with an intervening layer of icelandite. The modelcalculations show that the icelandite can be derived from ferrobasaltby 50 per cent fractional crystallization, but one-stage fractionalcrystallization models cannot account for generation of theacid magma. Simple partial or complete fusion of the field-associatedtrondhjemite xenoliths cannot produce the acid magma. Instead,a more complex fusion, hybridization and fractional crystallizationmodel is presented, which is consistent with the available petrologicevidence. This model involves large-scale fusion of pre-existingtrondhjemite intrusions or reactivation of previously consolidatedroof-rock in the magma chamber followed by hybridization ofthe acid magma with 7 to 14 per cent basaltic magma. Finally,10 to 11 per cent fractional crystallization of the dacite hybridis required to produce the observed compositional range withinthe rhyolite ejecta. The 1875 explosive eruption was causedby the ascent of tholeiitic basalt magma from depth during crustalrifting. Influx of new basalt magma in 1874–75 triggeredconvective mixing and hybridization in the compositionally zonedmagma chamber.  相似文献   
7.
The geochemical evolution of Montserrat provides an importantbackground to understanding the current activity of this islandarc volcano. Here we present major and trace element, and U-,Th- and O-isotope data for rocks generated in the last 300 kyrthat provide constraints on the magmatic processes occurringbeneath the volcano. Samples range from low- to medium-K calc-alkalinebasalts to dacites. Three suites can be distinguished on thebasis of major and trace element compositions: the South SoufrièreHills suite; the Soufrière Hills suite, including thelava from the current eruption; and the mafic inclusions. Magmaticdifferentiation of the magma that crystallized to form the maficinclusions appears to have been governed by closed-system processes,modelled by fractional crystallization (F  相似文献   
8.
Compositions of matrix glasses from the current eruption ofSoufrière Hills Volcano indicate that decompression-drivencrystallization results in 20–70 wt % groundmass crystallizationduring eruption and variable degassing. Variations in crystallinityand volatile contents (water and chlorine) of matrix glassesare attributed to variations in extrusion rates and residencetimes in the lava dome. Residual water contents in pumice clasts(0·2–0·6 wt %) indicate minimum pressuresof 1·1–3·7 MPa in 1997 Vulcanian explosions.Residual water contents of 1·6 wt % in a ballistic blockejected in sub-Plinian explosive activity on 17 September 1996imply larger pressure drops (  相似文献   
9.
The Orapa A/K1 Diamond Mine, Botswana, exposes the crater facies of a bilobate kimberlite pipe of Upper Cretaceous age. The South Crater consists of layered volcaniclastic deposits which unconformably cross‐cut massive volcaniclastic kimberlite of diatreme facies in the North Pipe. Based on the depositional structure, grain‐size, sorting and composition of kimberlite in the South Crater, six units are distinguished in the ~70 m thick stratiform crater‐fill sequence and talus slope deposits close to the crater wall, which represents a multistage infill of the volcanic crater. Monolithic basalt breccias (Unit 1) near the base of the crater‐fill are interpreted as rock‐fall avalanche deposits, generated by the sector collapse of the crater walls. These deposits are overlain by a basal imbricated lithic breccia and upper massive sub‐unit (Unit 2), interpreted as the deposits of a pyroclastic flow that entered the South Crater from another source. Vertical degassing structures within the massive sub‐unit show evidence for elutriation of fines and probably were formed after emplacement by fluidization due to air entrainment. Units 3 and 5 are thinly stratified deposits, characterized by diffuse bedding, reverse and normal grading, coarse lenticular beds, mudstone beds, small‐scale scour channels and load casts. These units are attributed to rapidly emplaced sheet floods on the crater floor. Units 3 and 5 are directly overlain by poorly sorted volcaniclastic kimberlite (Units 4 and 6) rich in basalt boulders, attributed to debris flows formed by the collapse of crater walls. Unit 7 comprises medium sandstones to cobble conglomerates representing talus fans, which were active throughout the deposition of Units 1 to 6. The study demonstrates that much of the material infilling the South Crater is derived externally after eruption, including primary pyroclastic flow deposits probably from another kimberlite pipe. These findings have important implications for predicting diamond grade. Results may also aid the interpretation of crater sequences of ultra‐basic, basaltic and intermediate volcanoes, together with the deposits of topographic basins in sub‐aerial settings.  相似文献   
10.
There is a growing need to incorporate biotic interactions, particularly those between predators and their prey, when predicting climate-driven shifts in marine fishes. Predators dependent on a narrow range of prey species should respond rapidly to shifts in the distribution of their prey, whereas those with broad trophic adaptability may respond to shifts in their prey by altering their diet. Small pelagic fishes are an extremely important component of the diet of many marine predators. However, their populations are expected to shift in distribution and fluctuate in abundance as the climate changes. We conducted a comparative study of the seasonal diet of adult Pomatomus saltatrix over two periods (June–December 2006 and 2012) and examined the available data on small pelagic fishes biomass in a global hotspot (the coastal region of southern Angola, southern Africa) to gain an understanding of the tropic adaptability of the species. Despite a drop (630 000 t to 353 000 t) in the abundance of their dominant prey (Sardinella aurita) in the region, it remained the most important prey item during both study periods (Period 1 = 99.3% RI, Period 2 = 85.3% RI, where %RI is a ranking index of relative importance). However, the diet during Period 2 was supplemented with prey typically associated with the nearshore zone. The seasonal data showed that P. saltatrix were capable not only of switching their diet from S. aurita to other prey items, but also of switching their trophic habitat from the pelagic to the nearshore zone. These findings suggest that P. saltatrix will not necessarily co-migrate if there is a climate-driven shift in the distribution of small pelagic fishes (their dominant prey). Accordingly, understanding the trophic adaptability of predators is critical for understanding their response to the impacts of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号