首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
地质学   14篇
海洋学   1篇
自然地理   4篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   
3.
In the first known kinetic application of the technique, synchrotron 57Fe-Mössbauer spectroscopy was used to follow the rate of heterogeneous electron transfer between aqueous reagents and a solid phase containing Fe. The solid, a synthetic 57Fe-enriched Fe(III)-bearing pyroaurite-like phase having terephthalate (TA) in the interlayer [Mg3Fe(OH)8(TA)0.5 · 2H2O], was reduced by Na2S2O4 and then reoxidized by K2Cr2O7 by means of a novel flow-through cell. Synchrotron Mössbauer spectra were collected in the time domain at 30-s intervals. Integration of the intensity obtained during a selected time interval in the spectra allowed sensitive determination of Fe(II) content as a function of reaction time. Analysis of reaction end member specimens by both the synchrotron technique and conventional Mössbauer spectroscopy yielded comparable values for Mössbauer parameters such as center shift and Fe(II)/Fe(III) area ratios. Slight differences in quadrupole splitting values were observed, however. A reactive diffusion model was developed that fit the experimental Fe(II) kinetic data well and allowed the extraction of second-order rate constants for each reaction. Thus, in addition to rapidly collecting high quality Mössbauer data, the synchrotron technique seems well suited for aqueous rate experiments as a result of the penetrating power of 14.4 keV X-rays and high sensitivity to Fe valence state.  相似文献   
4.
The potential for reduction of 99TcO4(aq) to poorly soluble 99TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4(aq) at rates that generally increased with increasing concentrations of 0.5 N HCl-extractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h−1), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and 57Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sediment-associated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4(aq) associated with groundwater contaminant plumes.  相似文献   
5.
A new Lower Cretceous lithostratigraphic unit of the Western Barents Shelf, named the Klippfisk Formation, is formally introduced. The formation represents a condensed carbonate succession deposited on platform areas and structural highs, where it consists of limestones and marls, often glauconitic. The limestones may have a nodular appearance, and fossil debris, which are dominated by Inoceramus prisms, may be abundant. The Klippfisk Formation is composed of two members: the Kutling Member defined herein from cores drilled on the Bjarmeland Platform, and the coeval Tordenskjoldberget Member described on Kong Karls Land. The base of the formation is defined by the abrupt decrease in gamma-ray intensity, where the dark shales of the underlying Hekkingen or Agardhfjellet formations are replaced by marls. It is often unconformable. The Klippfisk Formation is of Berriasian to Early Barremian age and appears to be time-transgressive over parts of the Western Barents Shelf (including Kong Karls Land). It passes laterally into the basinal Knurr Formation. On Kongsøya (Kong Karls Land) a thin shale unit, bounded by unconformities, earlier included in the Tordenskjoldberget Member, represents the northernmost extension of the overlying Kolje Formation in the Barents Shelf.  相似文献   
6.
Reductive biostimulation is currently being explored as a possible remediation strategy for U-contaminated groundwater, and is being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance of the remediation approach and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: (1) measurement of the rate of oxidative dissolution of biogenic uraninite (UO2(s)) deployed in groundwater at Rifle, (2) characterization of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and (3) laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively.  相似文献   
7.
The Triassic succession of Bjørnøya (200 m) comprises the Lower Triassic Urd Formation (65 m) of the Sassendalen Group, and the Middle and Upper Triassic Skuld Formation (135 m) of the Kapp Toscana Group. These units are separated by a condensed '.'Middle Triassic sequence represented by a phosphatic remainé conglomerate (0.2m).
The Urd Formation consists of grey to dark grey shales with yellow weathering dolomitic beds and nodules. Palynology indicates the oldest beds to be Diencrian; ammonoid faunas in the middle and upper part of the formation arc of Smithian age. The organic content (c. 1 %) includes kerogen of land and marine origin, reflecting a shallow marine depositional environment.
The Skuld Formation is dominated by grey shales with red weathering siderite nodules. There are minor coarsening upwards sequences; the highest bed exposed is a 20 m thick, very fine-grained sandstone. Palynomorphs indicate a late Ladinian age for the lower part of the formation, and macrofossils and palynomorphs indicate Ladinian to Carnian ages for the upper part. Sedimentary structures, a sparse marine fauna and microplankton indicate deposition in a shallow marine environment. The organic residues contain dominantly terrestrially derived kerogen.  相似文献   
8.
The Vikinghøgda Formation (250 m) is defined with a stratotype in Deltadalen-Vikinghøgda in central Spitsbergen. The Vikinghøgda Formation replaces the Vardebukta and Sticky Keep Formations of Buchan et al. (1965) and the lower part of the Barentsøya Formation of Lock et al. (1978) as extended geographically by Mørk, Knarud et al. (1982) in central Spitsbergen, Barentsøya and Edgeøya. The formation consists of three member: the Deltadalen Member (composed of mudstones with sandstones and siltstones), the Lusitaniadalen Member (dominated by mudstones with thin siltstone beds and some limestone concretions) and the Vendomdalen Member (composed of dark shales with dolomite interbeds and nodules). The Lusitaniadalen and Vendomdalen members replace the former Sticky Keep Formation/ Member in the siirne areu. The Vikinghøda Formation can be followed through central and eastern Spitsbergen to Barentøya and Edgeøya and includes all sediments between the chert-rich Kapp Starostin Formation (Permian) and the organic-rich shales of the Botneheia Formation (Middle Triassic). The subdivision into three members is also reflected in the organic carbon content and palynofacies. Upwards. each succeeding member becomes more distal, organic-rich and oil-prone than the one below.
The Vikinghøda Formation is well-dated by six ammonoid zones. although the transitional beds between the Deltadalen and Lusitaniadalen members lack age diagnostic macrofossils. Corresponding palynozonation and magnetustratigraphy have also been determined. The overall stratigraphical development correlates well with other key Triassic areas in the Arctic, although intervals in the late Dienerian and early Smithian may be condensed or missing.  相似文献   
9.
中国的火山岩油气勘探近年来进展非常快,并不断在许多盆地发现了优质火山岩储层,其中风化壳型储层作为非常重要的火山岩储集体类型而倍受重视。三塘湖盆地马朗凹陷石炭系风化壳型储层储集空间以溶蚀孔洞缝为主,储层物性非常好。通过火山岩油气勘探中的野外露头观察、钻井取心、镜下薄片鉴定,及主量元素、微量元素等分析化验资料,并结合火山岩岩石学特征和物性特点,初步建立了该区的风化壳储层的发育模式,将火山岩风化壳储层在垂向上自上而下划分为五个带: ①最终分解产物带; ②水解带; ③淋滤带; ④崩解带; ⑤未风化带(母岩)。淋滤带储集物性最好,该区风化淋滤是改善储层的关键。  相似文献   
10.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号