首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
地球物理   4篇
地质学   7篇
海洋学   2篇
天文学   1篇
  2018年   1篇
  2015年   1篇
  2010年   2篇
  2009年   1篇
  2003年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1981年   2篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
The likelihood that the carbon fluxes measured as part of the US-JGOFS field program in the equatorial Pacific ocean (EgPac) during 1992 yielded a balanced carbon budget for the surface ocean was determined. The major carbon fluxes incorporated into a surface carbon budget were: new production, particulate organic carbon (POC) and dissolved organic carbon (DOC) export, CaC03 export, C02 gas evasion, dissolved inorganic carbon (DIC) supply, and the time rate of charge. The ratio of the measured concentration gradients of DOC and DIC provided a constraint on the ratio of POC/DOC export. Uncertainties of ±30–50% for individual carbon flux measurements reduce the likelihood that a carbon balance can be measured during a JGOFS process-type study. As a benchmark, carbon fluxes were prescribed to yield a hypothetical surface carbon budget that was, on average, balanced. Given the typical errors in the individual carbon fluxes, however, there was only about a 30% chance that this hypothetical budget could be measured to be balanced to ±50%. Using this benchmark, it was determined that there was a 95 % chance that the carbon flux measurements yielded a surface DIC budget balanced (to ±50%) during El Nino conditions in boreal spring 1992, when the total organic carbon export rate was - 5 mmol C m-2 day- 1 and the POC export was 3 mmol C m−2 day−1. In boreal fall 1992, during cold period conditions, there was a 70% chance that the surface carbon DIC budget was balanced when the total organic carbon export rate was 20 mmol C m−2 day−1 and export was -13 mmol C m-2 day-'. The DOC to DIC concentration gradient ratio of - -0.15, measured in depth profiles down to 100m and in surface waters, was used as an important constraint that most (> 70%) of the organic carbon exported from the euphotic zone was POC rather than DOC. If a balanced surface DIC budget was used to test the compatibility of individual carbon fluxes measured during EgPac, then a three- to four-fold increase in total and particulate organic carbon export between spring and fall is indicated. This increase was not reflected in the POC loss rates measured by drifting sediment trap collections or estimated by234Th deficiencies coupled with the C/Th measured on suspended particles.  相似文献   
2.
3.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
Four large landslides, each with a debris volume >106 m3, in the Himalaya and Transhimalaya of northern India were examined, mapped, and dated using 10Be terrestrial cosmogenic radionuclide surface exposure dating. The landslides date to 7.7±1.0 ka (Darcha), 7.9±0.8 ka (Patseo), 6.6±0.4 ka (Kelang Serai), and 8.5±0.5 ka (Chilam). Comparison of slip surface dips and physically reasonable angles of internal friction suggests that the landslides may have been triggered by increased pore water pressure, seismic shaking, or a combination of these two processes. However, the steepness of discontinuities in the Darcha rock-slope, suggests that it was more likely to have started as a consequence of gravitationally-induced buckling of planar slabs. Deglaciation of the region occurred more than 2000 years before the Darcha, Patseo, and Kelang Serai landslides; it is unlikely that glacial debuttressing was responsible for triggering the landslides. The four landslides, their causes, potential triggers and mechanisms, and their ages are compared to 12 previously dated large landslides in the region. Fourteen of the 16 dated landslides occurred during periods of intensified monsoons. Seismic shaking, however, cannot be ruled out as a mechanism for landslide initiation, because the Himalaya has experienced great earthquakes on centennial to millennial timescales. The average Holocene landscape lowering due to large landslides for the Lahul region, which contains the Darcha, Patseo, and Kelang Serai landslides, is ~0.12 mm/yr. Previously published large-landslide landscape-lowering rates for the Himalaya differ significantly. Furthermore, regional glacial and fluvial denudation rates for the Himalaya are more than an order of magnitude greater. This difference highlights the lack of large-landslide data, lack of chronology, problems associated with single catchment/large landslide-based calculations, and the need for regional landscape-lowering determinations over a standardized time period.  相似文献   
5.
Three glacial stages (Deshkit 1, Deshkit 2 and Dishkit 3 glacial stages) are identified in the Nubra and Shyok valleys in northernmost Ladakh, northwest India, on the basis of geomorphic field mapping, remote sensing, and 10Be terrestrial cosmogenic nuclide surface exposure dating. The glacial stages date to ∼ 45 ka (Deshkit 1 glacial stage), ∼ 81 ka (Deshkit 2 glacial stage) and ∼ 144 ka (Deshkit 3 glacial stage). A mean equilibrium line altitude depression of ∼ 290 m for the Deshkit 1 glacial stage was calculated using the area accumulation ratio, toe-to-headwall ratio, area-altitude, and area-altitude balance ratio methods. Comparison of glaciation in the Nubra and Shyok valleys with glaciations in the adjacent Central Karakoram of northern Pakistan and northern side of the Ladakh Range of northern India indicates that glaciation was synchronous on Milankovitch timescales across the region during MIS-6, but differed greatly in extent, with more extensive glaciation in the Karakoram than the morphostratigraphically equivalent glaciation on the northern slopes of the Ladakh Range. This highlights the strong contrast in the extent of glaciation across ranges in the Himalaya-Tibetan orogen, necessitating caution when correlating glacial successions within and between mountain ranges.  相似文献   
6.
Tree-ring 14C measurements indicate the long-term solar variations, as modulations of the cosmic ray flux, shown in Figure 1.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   
7.
Sediment cores were collected from three Louisiana coastal marsh ponds, dated with radioisotopes, and analyzed for diatom remains to determine if long-term salinity changes were evident in the sediment record. A diatom-based salinity index formulated from a statistical comparison of available salinity data and changing diatom assemblages demonstrated that diatom remains appear to preserve salinity signals in coastal brackish and salt marsh environments. The salinity index was applied to sediment cores spanning the late 1600s to the 1990s and provided a more complete record of salinity than field data, which were temporally and spatially incomplete. The salinity reconstructions indicated that salinity has increased at two sites and decreased at a third since the early 1900s. The salinity changes are less than 1‰ per decade in all cases, and may be due to natural variability as depicted by the wide range of salinities observed between the late 1600s and 1900. Salinity regimes may be very localized (<2 km from a hydrologic source), indicating single-site studies may not be applicable to regional inferences. This study demonstrates that diatoms can be used to reconstruct past salinity in coastal marsh environments and can provide a useful tool with which to study the changing hydrology of river-influenced ecosystems.  相似文献   
8.
The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.  相似文献   
9.
Future aquatic nutrient limitations   总被引:8,自引:0,他引:8  
Nutrient limitation of phytoplankton growth in aquatic systems is moving towards a higher incidence of P and Si limitation as a result of increased nitrogen loading, a N:P fertilizer use of 26:1 (molar basis), population growth, and relatively stable silicate loading. This result will likely alter phytoplankton community composition, and may compromise diatom-->zooplankton-->fish food webs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号