首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
大气科学   1篇
地球物理   1篇
地质学   11篇
  2021年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Effluent sludge from an anaerobic digester was used as a source of nitrogen, phosphate, sulfur, and other nutrients in the culture medium of ethanol production by the yeast Saccharomyces cerevisiae. Several pretreatments (mechanical, chemical, thermal, and thermo-chemical) were performed on the anaerobic digested sludge (ADS) to make the nutrients accessible to the yeast cells. Preliminary experiments revealed that S. cerevisiae is not able to assimilate the carbon content of the ADS. However, when glucose was added to the medium, ethanol production was observed. The yield of ethanol using untreated ADS was only 10 % of the theoretical yield, but alkaline pretreatment improved it up to 43 %. By separating the hydrolysate of alkaline-treated ADS from the suspended solids, the ethanol yield from the supernatant was further improved up to 65 % of theoretical yield. Alkaline-treated ADS exhibited competitive performance with the mixture of yeast extract and mineral salts in ethanol fermentation.  相似文献   
3.
Among the constitutive models for rock fractures developed over the years, Barton's empirical model has been widely used. Although Barton's failure criterion predicts peak shear strength of rock fractures with acceptable precision, it has some limitations in estimating the peak shear displacement, post‐peak shear strength, dilation, and surface degradation. The first author modified Barton's original model in order to address these limitations. Barton proposed his model for degradation of fracture asperities in unloading, reloading, and shear displacement reversal based on just one cyclic direct shear test. In this study, a database of results of 18 cyclic direct shear tests available in the literature was collected and analyzed. Modifications were made to Barton's original model (in terms of fracture cyclic shearing) to make it consistent with the modified model proposed by the first author. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Experimental Validation of Modified Barton’s Model for Rock Fractures   总被引:2,自引:2,他引:0  
Among the constitutive models for rock fractures developed over the years, Barton’s empirical model has been widely used. Although Barton’s failure criterion predicts peak shear strength of rock fractures with acceptable precision, it has some limitations in estimating the peak shear displacement, post-peak shear strength, dilation, and surface degradation. The first author modified Barton’s original model in order to address these limitations. In this study, the modified Barton’s model (the peak shear displacement, the shear stress–displacement curve, and the dilation displacement) is validated by conducting a series of direct shear tests.  相似文献   
5.
Natural Hazards - Recent tsunami disasters caused devastating damage to non-engineered as well as engineered coastal infrastructure. In fact, previous design guidelines containing provisions for...  相似文献   
6.
Seismic site effect has been a major issue in the field of earthquake engineering due to the large local amplification of the seismic motion. This paper presents the importance of an appropriate soil behavior model to simulate earthquake site response and gives an overview of the field of site response analysis. Some of the well-known site response analysis methods are discussed. The objective of this paper is to investigate the influences of nonlinearity on the site response analysis by means of a more precise numerical model. In this respect, site responses of four different types of one-layered soil deposit, based on various shear wave velocities with the assumption of linear and rigid base bedrock, were analyzed by using the equivalent linear and fully nonlinear approaches. Nonlinear analyses?? results were compared with those of the linear method, and both of the similarities and differences are discussed. It is concluded that in the case of nonlinearity of soil under strong ground motions, 1-D equivalent linear modeling overestimates the amplification patterns in terms of absolute amplification level, and cannot correctly account for resonant frequencies and hysteric soil behavior. Therefore, more practical and appropriate numerical techniques for ground response analysis should be surveyed.  相似文献   
7.
Akono  Ange-Therese  Kabir  Pooyan 《Acta Geotechnica》2019,14(4):1129-1142

Our research objective is to understand the influence of geochemistry on the fracture behavior of organic-rich shale at multiple length-scales. Despite an increasing focus on the fracture behavior of organic-rich shale, the relationships between geochemistry and fracture behavior remain unclear and there is a scarcity of experimental data available. To this end, we carry out 59 mesoscale scratch-based fracture tests on 14 specimens extracted from 7 major gas shale plays both in the USA and in France. Post-scratch testing imaging reveals fractures with a small crack width of about 411–660 nm. The fracture toughness is evaluated using the energetic size effect law, which is extended to generic axisymmetric probes. A nonlinear anisotropic and multiscale fracture behavior is observed. In addition, a positive correlation is found between the fracture toughness and the presence of kerogen, clay and calcite. Moreover, the geochemistry is found to influence the timescale and the regime of propagation of the hydraulic fracture at the macroscopic length-scale. In particular, shale systems rich in total organic content, clay and calcite are more likely to exhibit high values of the fluid lag and a low hydraulic crack width. Our findings highlight the need for advanced constitutive models for organic-rich shale systems and advanced hydraulic fracturing solutions that can fully integrate the complex fracture response of organic-rich shale materials.

  相似文献   
8.
In stability analysis of rock blocks, the deformability of the blocks can conveniently be simulated using the boundary element method (BEM). However, all boundary conditions are given as stresses. Thus, the displacement solution is not unique. In this paper, an algorithm is proposed to remove rigid body motions in the solution of the boundary form of Somigliana identity discretized by the direct BEM formulation. The algorithm is applied to the calculation of the normal stiffness of rock blocks and coupled with BS3D, large displacement and rotation algorithm for the general stability of rock blocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O, respectively) have been widely used to investigate tree water source partitioning. These tracers have shed new light on patterns of tree water use in time and space. However, there are several limiting factors to this methodology (e.g., the difficult assessment of isotope fractionation in trees, and the labor-intensity associated with the collection of significant sample sizes) and the use of isotopes alone has not been enough to provide a mechanistic understanding of source water partitioning. Here, we combine isotope data in xylem and soil water with measurements of tree's physiological information including tree water deficit (TWD), fine root distribution, and soil matric potential, to investigate the mechanism driving tree water source partitioning. We used a 2 m3 lysimeter with willow trees (Salix viminalis) planted within, to conduct a high spatial–temporal resolution experiment. TWD provided an integrated response of plant water status to water supply and demand. The combined isotopic and TWD measurement showed that short-term variation (within days) in source water partitioning is determined mainly by plant hydraulic response to changes in soil matric potential. We observed changes in the relationship between soil matric potential and TWD that are matched by shifts in source water partitioning. Our results show that tree water use is a dynamic process on the time scale of days. These findings demonstrate tree's plasticity to water supply over days can be identified with high-resolution measurements of plant water status. Our results further support that root distribution alone is not an indicator of water uptake dynamics. Overall, we show that combining physiological measurements with traditional isotope tracing can reveal mechanistic insights into plant responses to changing environmental conditions.  相似文献   
10.

In this paper, a multiphase three-dimensional numerical reproduction of a large-scale laboratory experiment of tsunami-like bore interaction with a surface-piercing circular column is presented. The numerical simulation is conducted using OpenFOAM. A dam-break mechanism is implemented in order to generate tsunami-like bores. The numerical model is validated using the results of experiments performed at the Canadian Hydraulics Center of the National Research Council in Ottawa, Canada. Unsteady Reynolds-Averaged Navier–Stokes equations are used in order to treat the turbulence effects. The Shear Stress Transport kω turbulence model showed a high level of accuracy in replicating the bore–structure interactions. A scaled-up domain is used to investigate the influence of bed condition in terms of various downstream depths and roughnesses. Finally, a broad investigation on bore propagation characteristics is performed. The stream-wise forces exerted on the structural column as well as the bore velocity are compared and analyzed for smooth, rough, dry and wet beds with varying depths.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号