首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2016年   3篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
It is hypothesized that hydrochemical parameters can be employed to deduce the basaltic trap thickness and that there exist diverse hydrochemical processes within the existing host rocks along the Deccan Volcanic Province (DVP) margin. Chemical imprints of aquifers, in various flows of flood basalt and fissured zones of granites, had been appraised using major ion chemistry of groundwater in a test site of 623 km2 at the southern margin of the DVP in India. The wide ranging hydrochemical processes, obtained from empirical data, describe the predominance of carbonate, dolomite, calcite and anorthite weathering in basalts, and alkali feldspar (albite and orthoclase) in granites. Results showed that the elevated concentrations of alkaline earth elements in basaltic aquifers and alkali rich elements in granitic aquifers were useful in tracing the sources of host rock for dissolved mineral reactants. Further, a digital elevation model using Shuttle Radar Topography Mission (90 m) elevation satellite data aided in deciphering trap thickness, vertical transition zone of trap and granitic basement comprising the well depths and hydrochemistry. The mapping of trap thickness is useful to explore the groundwater resources at the vertical transition zone between the basaltic trap and granitic base. The estimated thickness of the basaltic trap is varied from 4 to 98 m at the DVP southern margin, which is further verified with the help of exploratory well lithologs matched closely.  相似文献   
2.
The Central Ground Water Board (CGWB) constructed 72 bore wells down to a targeted depth of 208 m in Nanded district, Maharashtra which is mainly underlain by hard rocks, namely basalts and granites. The yield of these bore wells varies from 0.10 litres/second (l/s) to 25 l/s and depth of weathering varies from less than 1 m to 24 meters below ground level (m bgl). The shallowest and the deepest aquifer zones are encountered at 7 and 172 m bgl respectively and majority of the productive aquifer zones are encountered within 100 meter (m) depth. Most productive zones are fractured basalts, fractured and weathered granites and 31 % of the zones are encountered within 25 m, 36 % within 25–50 m, 24 % within 50–100 m, 8 % within 100–150 m and less than 1 % within 150–173 m depth ranges. Out of the three major sets of lineaments, the NE-SW trending lineaments are more productive, and a maximum of five fracture zones are encountered in all. Surface geophysical studies (profiling) reveal that wherever the ratio between high resistivity and low resistivity is high, the discharge is high, and where the ratio is low the discharge is low. The depth to water level in these bore wells are in the range of 1.5–47.5 m bgl (below ground level). The transmissivity (T) and Storativity (S) values of 21 wells range from 3 to 593 m2/day and 6.5 × 10?6 to 7.32 × 10?2 respectively. The groundwater from the area is mostly of Ca-Na-HCO3-Cl, Ca-Na-HCO3, Ca-HCO3-Cl, Na-HCO3, Na-HCO3-Cl, Na-Cl, Ca-HCO3 types in the descending order of dominance and a few are found to be unsuitable for drinking. At a few sites, drilling down to the targeted depth of 200 m couldn’t be completed due to highly fractured nature of formations, hydraulic backpressure, occurrences of saturated intertrappean beds and high magnetic nature of formations.  相似文献   
3.
The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30–85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 ? concentration is high in shallow irrigation wells, and F? is high in deeper wells. Positive correlation is observed between F? and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.  相似文献   
4.
The aim of the present study is to identify the geochemical processes responsible for higher fluoride (F) content in the groundwater of the Yellareddigudem watershed located in Nalgonda district, Andhra Pradesh. The basement rocks in the study area comprise mainly of granites (pink and grey varieties), which contain F-bearing minerals (fluorite, biotite and hornblende). The results of the study area suggest that the groundwater is characterized by Na+: HCO facies. The F content varies from 0.42 to 7.50 mg/L. In about 68% of the collected groundwater samples, the concentration of F exceeds the national drinking water quality limit of 1.5 mg/L. The weathering of the granitic rocks causes the release of Na+ and HCO ions, which increase the solubility of ions. Ion exchange between Na+ and Ca2+, and precipitation of CaCO3 reduce the activity of Ca2+. This favours dissolution of CaF2 from the F-bearing minerals present in the host rocks, leading to a higher concentration of F in the groundwater. The study further suggests that the spatial variation in the F content appears to be caused by difference in the relative occurrence of F-bearing minerals, the degree of rockweathering and fracturing, the residence time of water in the aquifer materials and the associated geochemical processes. The study emphasizes the need for appropriate management measures to mitigate the effect of higher F groundwater on human health.  相似文献   
5.
Two dimensional Electrical Resistivity Tomography (ERT) investigation along with Time Domain Induced Polarization (TDIP) investigation covering 1.6 km line were carried out at 3 natural recharge sites in a overexploited groundwater granite watershed, situated in a semi arid region in the state of Telangana, India. At these sites, shallow and/ or deep moisture influx measurements were also carried out using injected tritium tracer and neutron moisture probe. The watershed is covered by sandy loam to silt loam soil, receives an average annual rainfall of 620 mm with the pre monsoon groundwater level ranging from 8m to 29m bgl. The spot investigations were done to assess and understand the recharge process and groundwater potential in terms of resistivity/conductivity and moisture characteristics of the subsurface rock formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号