首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
海洋学   1篇
  2017年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.  相似文献   
2.
3.
Soil slurry dredged from seabed is becoming more widely used in land reclamation projects. A major problem encountered is that soil slurry is very high in water content and the dewatering process is difficult and time consuming. In this paper, the use of chemical flocculant for the dewatering of soil slurry is proposed and experimentally tested. Polyacrylamide (PAM) with different charge types/charge densities was tested in preliminary slurry dewatering tests. The results showed that the most effective flocculant, cationic PAM (CPAM) with +15 charge density, can reduce the volume of soil slurry (500% water content) by around 60% in 10 minutes. In contrast, the volume of pure soil slurry was almost unchanged. Slurry sedimentation tests on slurries with different flocculant contents and water contents were conducted. It is shown that, by adding flocculant into soil slurry, the rate of settlement under self-weight can be considerably increased in the tested range of water contents (100.7–879.5%). But the water content at the final state increases with flocculant additions. Slurry sedimentation curves displayed different characteristics with different flocculant contents as well as water contents. It is evidenced by particle size analysis that the addition of flocculant into soil slurry can attract soil particles and form large flocs (assemblage of particles), which explains the faster settlement rate in flocculant-treated soil slurry as compared with pure soil slurry. Scanning electron microscopic analysis revealed that flocculant-treated soil particles are more randomly oriented, while soil particles with no flocculant addition deposit in a more paralleled manner. This could explain the higher water content of flocculant-treated soil slurry at the final state.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号