首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   1篇
地质学   15篇
海洋学   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The study of metal contamination in urban topsoils of Mexico City using GIS   总被引:1,自引:0,他引:1  
This research presents and discusses information concerning the spatial distribution of heavy metals (Pb, Cu, Zn, Ba, Co, Cr, Ni and V) in the urban environments of Mexico City using geographical information system and statistical analysis. Superficial soil samples (n = 146) were analyzed. The highest contamination indices were found in the north and center zone of the metropolitan area. In contrast, the surrounding rural fields show a lower impact grade. The higher concentrations of Pb, Cu, Zn and Ba were observed as being related to high vehicular traffic, nevertheless other elements such as Co, Cr, Ni and V do not show anthropogenic influence and their content can be attributed to the parental rock. The results are compared with previous surveys carried out in 2003 in order to evaluate temporal deposition trends. No changes were found on reported concentrations except for Cu and Zn, whose concentration has increased in later years. The results suggest that spatial distribution analysis and results in comparison with previous studies could be useful for the management and sustainable development of the metropolitan area of Mexico City.  相似文献   
2.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a microanalytical tool especially suitable for providing fast and precise U-Pb geochronological results on zircon grains. A new 193 nm excimer laser adapted to a micromachining workstation, equipped with a newly designed two-volume ablation cell and coupled with a quadrupole ICP-MS, is presented here. The system was tuned routinely to achieve sensitivities in the range of 3000 cps/μg g−1 for 238U (< 2% RSD), with a 34 μm spot size, at 5 Hz and ∼ 8 J cm−2, while ablating the NIST SRM 612 glass reference material. The system was capable of providing fast (< 1.5 minutes each analysis) and precise (generally < 1.5% 1s errors) 206Pb/238U zircon ages. The ages of widely used reference material zircons (Plesovice, 337 Ma; Temora, 416 Ma; R33, 418 Ma; Sri Lanka, 564 Ma; 91500, 1065 Ma) could be precisely matched, with an accuracy on isotopic ratios that ranged from ∼ 2 to ∼ 6%, depending on the homogeneity of the natural reference materials.  相似文献   
3.
A heavy mineral (HM) study and light and heavy rare earth elements (LREE and HREE) analysis were performed in coastal and inland dune sands, El Vizcaino Desert, Central Baja California Peninsula, Mexico. Our study shows high abundances of hornblende and apatite in the El Vizcaino dune sands, suggesting a dominance of granodiorites/intermediate plutonic rocks and marine authigenic phosphorite in the dune sands. There is a relationship between unstable heavy minerals like hornblende, pyroxenes, and sphene, and heavy rare earth elements (HREE) that suggests that unstable heavy minerals are potential carriers of HREE in the dune fields. However, there is a slight depletion of HREE in relation to LREE, especially in one locality of the inland dunes probably associated with the wind regime and weathering of unstable heavy minerals in the sands. Inland, transitional, and coastal dune fields can be observed as different dune provinces by means of grouping HM and REE data in two separate dendograms. It seems that HREE are correlated with fine-grained sand sizes and correlated with high CIA values linked to slightly weathered sands.  相似文献   
4.
This study reports the degree of heavy metal pollution (Cr, Cu, Ni, Pb, Zn and V) in 135 urban topsoil samples from the metropolitan area of Mexico City. Pollution indices (PI) were calculated to identify the metal accumulation with respect to the background values. The levels of heavy metals in the analyzed samples show a wide range of variation. Lead, Zn and Cu are the elements most enriched in the analyzed area, presenting pollution indexes of up to 23.8, 21.6 and 12.4, respectively. Geochemical maps were produced to assess the spatial distribution of pollution index. It is concluded that emissions from vehicles may be the major source of Pb urban contamination; furthermore, other small or large factories are possible sources for soil pollution (Cu, Zn). The concentration of Cr, Ni, and V in most of the analyzed samples do not appear to reach pollution levels. The assessment of the soil environmental quality in the metropolitan area Mexico City in terms of PI can be used as the basis for a regular monitoring program for implementing suitable pollution control measures.  相似文献   
5.
Environmental geochemistry of the Guanajuato Mining District, Mexico   总被引:1,自引:0,他引:1  
The Guanajuato Mining District, once one of the major silver producers in the world, has been exploited for silver and gold from low-sulfidation quartz- and calcite-rich epithermal veins since 1548. Currently, there are some 150 million tonnes of low-grade ore piles and mine-waste material (mostly tailings) piles, covering a surface area of 15 to 20 km2 scattered in a 100-km2 region around the city of Guanajuato. Most of the historic tailings piles were not deposited as formal tailings impoundments. They were deposited as simple valley-filling piles without concern for environmental issues. Most of those historical tailings piles are without any vegetation cover and undergo strong eolian and hydrologic erosion, besides the natural leaching during the rainy season (which can bring strong thunderstorms and flash flows). There is public concern about possible contamination of the local aquifer with heavy metals (Fe, Mn, Zn, As and Se) derived from the mining activities.Experimental and field data from this research provide strong geochemical evidence that most of the mine-waste materials derived from the exploitation of the epithermal veins of the region have very low potential for generation of acid mine drainage due to the high carbonate/sulfide ratio (12:1), and very low potential for leaching of heavy metals into the groundwater system. Furthermore, geochemical evidence (experimental and modeled) indicates that natural processes, like metal adsorption onto Fe-oxy-hydroxides surfaces, control the mobility of dissolved metals. Stable isotope data from surface water, groundwater wells (150-m depth) and mine-water (300- to 500-m depth) define an evaporation line (δD=5.93 δ18O=13.04), indicating some deep infiltration through a highly anisotropic aquifer with both evaporated water (from the surface reservoirs) and meteoric water (not evaporated). Zinc concentrations in groundwater (0.03 to 0.5 ppm) of the alluvial aquifer, some 15 km from the mineralized zone, are generally higher than Zn concentrations in experimental tailings leachates that average less than 0.1 ppm. Groundwater travel time from the mineralized area to the alluvial valley is calculated to range from 50 to several hundred years. Thus, although there has been enough time for Zn sourced from the tailings to reach the valley, Zn concentrations in valley groundwater could be due to natural dissolution processes in the deep portions of the epithermal veins.  相似文献   
6.
This paper demonstrates techniques for pre-eruption prediction of lahar-inundation zones in areas where a volcano has not erupted within living memory and/or where baseline geological information about past lahars could be scarce or investigations to delimit past lahars might be incomplete. A lahar source (or proximal lahar-inundation) zone is predicted based on ratio of vertical descent to horizontal run-out of eruptive deposits that spawn lahars. Immediate post-eruption distal lahar-inundation zones are predicted based on “pre-eruption” distal lahar-inundation zones and on spatial factors derived from a digital elevation model. Susceptibility to distal lahar-inundation is estimated by weights-of-evidence, by logistic regression and by evidential belief functions. Predictive techniques are applied using a geographic information system and are tested in western part of Pinatubo volcano (Philippines). Predictive maps are compared with a forecast volcanic-hazard map through validation against a field-based volcanic-hazard map. The predictive model of proximal lahar-inundation zone has “true positive” prediction accuracy, “true negative” prediction accuracy, “false positive” prediction error and “false negative” prediction error that are similar to those of the forecast volcanic-hazard map. The predictive models of distal lahar inundation zones have higher “true positive” prediction accuracy and lower “false negative” prediction error than the forecast volcanic-hazard map, although the latter has higher “true negative” prediction accuracy and lower “false positive” prediction error than the former. The results illustrate utility of proposed predictive techniques in providing geo-information could be used, howbeit with caution, for planning to mitigate potential lahar hazards well ahead of an eruption that could generate substantial source materials for lahar formation.  相似文献   
7.
A new record of the Marine Isotopic Stage 5, the last Interglacial Stage before present is presented in this paper. Sedimentological, micromorphological, trace elements analyses (Rb–Sr) and magnetic polarity determination were performed on Buenos Aires and Ensenada Formation (Late Cenozoic) deposits in the southern Chaco-Pampean Basin (Argentina). This work aims to unravel paleoclimatic and paleoenvironmental information from the analyzed data.The studied deposits encompass a complex and cyclic 8 m-thick sedimentary-pedogenetic sequence formed by loessic sediments and paleosols with volcano-pyroclastic provenance.Four tabular units, with net base and top, were defined from erosion surfaces.An OSL age >126 kyr was obtained from the upper middle part of unit B, which suggests that this unit as well as unit C, could have developed during the latest interglacial stage, equivalent to MIS 5.The occurrence of calcretes indicates periods of little clastic supply and seasonal arid or semiarid climate while iron oxides, smectites and illite-bearing pedogenetic calcretes point to annual rain rates between 100 and 500 mm. No calcretes of any origin occur in present soils of the same zone. According to our proposed interpretation of the available data, climate during MIS 5 was drier than today. The drier conditions may have been related to lower temperatures during summer.  相似文献   
8.
This paper focuses on the study of the correlation between magnetic parameters with the level of contamination by heavy metals in urban soils. We report a magnetic investigation of urban soil samples from Merida, state of Yucatan, Southern Mexico. It appears that most of our samples contain ferrimagnetic minerals as the magnetic carriers, probably coming from the titanomagnetites/titanomaghemites series. This is inferred by the acquisition of isothermal remanent magnetization, which shows that most of samples are almost completely saturated at about 200 mT. The S−200 value (factor characterizing stability of remanent magnetization) is between 0.8 and 1.0, characteristic of ferrimagnetic minerals. The susceptibility vs. temperature measurements also point to some titanomaghemites and titanomagnetites as probable responsible for magnetization. On the other hand, measurements of magnetic susceptibility at high and low frequencies helped us to determine the high content of superparamagnetic grains in the majority of the samples, although not all of these showed high values of magnetic susceptibility. We found that the most contaminated samples by Pb and Zn showed the higher saturation isothermal remanent magnetization values, whereas the higher values in magnetic susceptibility correspond to samples contaminated by Cr. Finally, we noted that a high level in Sr decreases the magnetic susceptibility.  相似文献   
9.
This geochemical study of the Mexican subduction zone elucidates how metamorphic and dehydration reactions affecting the subducted oceanic plate at different depths can influence magmatic diversity. In the western Trans-Mexican Volcanic Belt, there is a narrow potassic volcanic front running in parallel to the Middle American Trench that becomes replaced by intraplate-like high-Nb rocks to the north, and by more typical calc-alkaline products to the southeast. Potassic rocks have high MgO and are enriched in incompatible trace elements, but have lower heavy rare earth element contents than more evolved calc-alkaline and high-Nb magmas, and slightly more enriched Sr, Nd and Pb isotopes. Potassic magmas also have higher Rb/Cs and Ba/Cs ratios than the calc-alkaline and high-Nb suites, and extend to unusually high Nb/Ta ratios that correlate positively with Rb/Ta, Zr/Ta, La/Ta and Gd/Yb. These chemical variations are inconsistent with different extents of melting of a peridotitic source, but are also incompatible with melting of a phlogopite-rich mantle (vein-plus-wall-rock relationship), unless mica is totally consumed during melting, and a titaniferous phase such as rutile remains in the residue together with garnet. This assemblage is unlikely in the source region of primitive hydrous magmas, but it is what would be expected during dissolution of phengite and monazite/allanite in the subducted slab, with the concurrent formation of an anhydrous rutile-bearing eclogite. The magmatic diversity of western Mexico can thus be explained by invoking contributions of chemically different subduction agents as a function of slab depth and residual mineralogy: a low-pressure/temperature aqueous fluid would induce melting of the peridotitic mantle wedge and form typical calc-alkaline volcanoes, whereas a deeper and hotter slab-derived melt (or supercritical liquid) would contribute to the formation of potassic magmas due to phengite/monazite/allanite disintegration. In this context, intraplate-like magmas derive from decompression melting of the upper mantle as a natural consequence of subduction geodynamics.  相似文献   
10.
Sedimentologic and petrographic analyses of outcroping and subsurface calcretes, palustrine carbonates, and silcretes were carried out in the southern Paraná Basin (Uruguay). The aim of this work is to describe the microfabric and interpret the genesis of these rocks through detailed analyses, since they contain significant paleoenvironmental and paleoclimatic evolution information.The main calcrete and silcrete host rock (Mercedes Formation) is represented by a fluvial thinning upward succession of conglomerate and sandstone deposits, with isolated pelitic intervals and paleosoils. Most of the studied calcretes are macroscopically massive with micromorphological features of alpha fabric, originated by displacive growth of calcite in the host clastic material due to evaporation, evapotranspiration and degassing. Micromorphologically, calcretes indicate an origin in the vadose and phreatic diagenetic environments. Micrite is the principal component, and speaks of rapid precipitation in the vadose zone from supersaturated solutions. The abundance of microsparite and secondary sparite is regarded as the result of dissolution and reprecipitation processes.Although present, brecciated calcretes are less common. They are frequent in vadose diagenetic environments, where the alternation between cementation and non-tectonic fracturing conditions take place. These processes generated episodes of fragmentation, brecciation and cementation. Fissures are filled with clear primary sparitic calcite, formed by precipitation of extremely supersaturated solutions in a phreatic diagenetic environment. The micromorphological characteristics indicate that calcretes resulted from carbonate precipitation in the upper part of the groundwater table and the vadose zone, continuously nourished by lateral migration of groundwater.The scarcity of biogenic structures suggests that they were either formed in zones of little biological activity or that the overimposed processes related to water table fluctuations produced intense recrystallization completely obliterating the biogenic fabric.Limestone beds containing terrestrial gastropods are geographically restricted. Situated at the top of the calcrete successions, they exhibit brecciated and peloidal-intraclastic textures but lack lamination, edaphic structures, aggregates and vertical rhizoliths. This indicates they correspond to low-energy palustrine deposits, generated in shallow, local and ephemeral ponds developed in topographic depressions. When water table levels dropped, the palustrine deposits were exposed. This favours the presence of terrestrial gastropods, seeds and insect nests. The combination of calcretes and palustrine carbonates indicates periods and areas with a reduced clastic input and a predominantly semiarid climate, with well-defined humid and dry seasons.Characteristics of the later developed massive and nodular horizons of silcretes, such as, preservation of the internal structure of the host rock, the small areal extent, the formation of massive lenses, the complex pore infillings and the lack of a columnar upper section, indicate that they were generated from groundwaters. Every silcretized horizon shows different positions of the groundwater table and relates to the dissection of landscape.The age of calcretization and silcretization is bracketed between the Late Cretaceous (Campanian–Maastrichtian) and the Early Eocene. Paleoclimate indicates changing conditions from warm and humid at the end of the Cretaceous (Mercedes Formation) to semiarid and seasonal during Paleocene (groundwater calcretes and palustrine deposits) and subtropical and seasonal in the early Eocene (Asencio Formation).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号