首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地质学   45篇
海洋学   3篇
自然地理   12篇
  2013年   3篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Shallow seismic data and vibrocore information, sequence stratigraphic and faunal evidence have been used for documentation of Late Weichselian reactivation of faulting in the south central Kattegat, southern Scandinavia. The study area is situated on the Fennoscandian Border Zone, where tectonic activity has been recurrent since Early Palaeozoic time and still occurs, as shown by present earthquake activity. New data from the area south of the island of Anholt show that after deglaciation fast isostatic rebound resulted in reactivation of a NW-SE striking normal fault system. This tectonic episode is dated to a period starting shortly before 15.0 cal. ka BP and ending around 13.5 cal. ka BP, after regression had already reached a level of about 30 m b.s.l. The vertical displacement associated with the faulting was in the order of 20 m. More generally, the results support the previously reported late Weichselian sea-level highstand, which was followed by forced regression until the eustatic sea-level rise surpassed the rate of glacio-isostatic rebound in early Preboreal. Our findings further imply that drainage of the Baltic Ice Lake through the Øresund at c. 15 cal. ka BP (Bergsten & Nordberg 1992) may have been triggered by tectonic activity in this region.  相似文献   
2.
Late- and postglacial history of the Great Belt, Denmark   总被引:3,自引:0,他引:3  
On the basis of shallow seismic records, vibrocoring, macrofossil analyses and AMS radiocarbon-dating, five stratigraphical units have been distinguished from the deepest parts of the central Great Belt (Storebælt) in southern Scandinavia. Widespread glacial deposits are followed by two lateglacial units confined to deeply incised channels and separated by an erosional boundary. Lateglacial Unit I dates from the time interval from the last deglaciation to the Allerød; lateglacial Unit II is of Younger Dryas age. Early Holocene deposits show a development from river deposits and lake-shore deposits to large lake deposits, corresponding to a rising shore level. Lake deposits are found up to 20 m below the sea floor, and the lake extended over some 200–300 km2. The early Holocene freshwater deposits are dated to the time interval c. 10900 to c. 8800 cal. yr BP and the oldest shells of marine molluscs from the Great Belt are dated to c. 8100 cal. yr BP.  相似文献   
3.
The Visdalen valley, situated at the northwestern corner of Edgeøya, was investigated with respect to lithostratigraphy and depositional environments of the Quaternary sediments. Eight major lithostratigraphic units are recognised of which seven were deposited during the Late Weichselian to early Holocene glaciation, deglaciation and the subsequent emergence of the area, and one unit deposited prior the last glaciation. Till deposition from a west-flowing glacier was followed by glaciomarine and later marine deposition of fine-grained sediments. Coarse-grained colluvial and alluvial-fan deltas were deposited along the mountainsides in the Visdalen palaeo-bay, and distal sediment gravity-flow deposits from these deltas were interbedded with the glaciomarine-marine sediments. A spit-platform (riegel) was built up across the Visdalen bay contemporaneously with the alluvial fan-deltas. Its formation was time-transgressive, with its highest part in the south close to the marine limit at 85 m a.s.l. and its lowest part in the north at ca 65 m a.s.l. The sediment source was alluvial and colluvial debris, which was entrained by longshore currents along the more exposed coast south of Visdalen and transported northwards to the final place of deposition. The bulk part of the riegel ridge is composed of progradational successions of steep foresets dipping towards NW, N and NE, and clearly rejects an earlier ice-contact model. Datings suggest that the fan-delta deposition and the riegel formation ended before 9,000 BP. A meltwater-fed lagoon with a highest level at >50m a.s.l. was formed behind the riegel ridge in which, according to varve counting, glaciolacustrine sedimentation lasted more than 250 years and occurred within the time span 9,000-8,500 BP. Gradual uplift of the area resulted in drainage of the glaciolacustrine lagoon. Beachface processes and fluvial down-cutting took place during the emergence of the area.  相似文献   
4.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   
5.
The late Weichselian sequence in the northern part of the Norwegian Trench is composed of eight units. The two lowermost units are massive, firm to stiff diamictons, interpreted to have been deposited beneath ice-streams that in all likelihood reached the shelf edge. They are overlain by glaciomarine and normal-marine sediments deposited after 15000BP. The first phase of glacial retreat from the Norwegian Trench (15000–14800 BP) was very rapid and left a thin layer of proximal sediments on top of the tills. This was followed by a period with lower accumulation rates (14800–13600 BP), probably as a result of rapid source retreat and cold meltwater inhibiting dropstone fall-out. The end of this interval marks the change from ice-stream calving in cold water to melting on land. According to lithologic and isotopic data, the maximum rate of Fennoscan-dian ice-sheet disintegration took place around 12500 BP. The water temperatures declined significantly and rates of sedimentation and ice-rafting fell in association with the Younger Dryas period. The final retreat of the ice began as early as 10 500 BP, and the transition to normal-marine sedimentation is reflected by precipitation of iron oxide followed by pyrite, reduced sedimentation rates, and a change from terrigenous to biogenic sedimentation.  相似文献   
6.
The morphogenesis of tills below the culmination zones of the Weichsclian inland ice has been studied an an upland area with a relief of 1500 m. The thickness of the tills varies considerably, depending principally on gee-morphology, ice-movement directions, and glaciofluvial drainage during the last deglaciation period. The thickest tills, found in valleys, accumulated in three ways. Glaciofluvial/lacustrine sediments of prcsumed Mid-Weichselian age have been discovered beneath the tills at niorc than 10 localities. The overlying tills are correlated with different phases of ice movement reconstructed on the basis of detailed studies of stt-iae. The till stratigraphy of one locality, Stenseng, is described in detail. Based upon combined analyses of texture, structure, and fabric, four different hasal tills are recognized, each corresponding to a particular ice direction. A characteristic boulder layer represents a change in thc direction of glacial movement. Boulder layers in till are thought to he essential for the development of earth pillars.  相似文献   
7.
The laminated sediments at Pudozh in eastern Karelia are generally assumed to have been deposited between 13 000 and 16 000 14C yr BP and have been used to date the recession of the active ice margin. However, 17 AMS 14C measurements performed on terrestrial plant macrofossils contained in these sediments show that deposition began during the late Allerφd, when the ice margin had already receded to the northern part of Lake Onega. Based on an age model, we assume that the 1933-year-long varved sequence covers the time period between c. 12 900 and 11 000 calendar years BP. During this period, which comprises the later part of the Late Weichselian and the early Holocene, the local vegetation consisted of open, tree-less dwarf shrub heaths. Increased soil erosion may have occurred before 12 550 calendar years BP.  相似文献   
8.
A two-step climatic warming and oceanographic change during the Younger Dryas/Preboreal transition was registered by diatom, foraminiferal, mollusc, lithologic data and sediment accumulation rates in a high resolution sediment core from the Swedish west coast. An abrupt climatic warming in the surface water of the Kattegat occurred at c . 10 200 BP, resulting in a rapid increase in sea surface water temperatures. The attenuation of meltwater discharge into the Kattegat led to an increase in sea surface salinity. Consequently, the difference in salinity through the water column diminished. This change happened within less than 80 years. The warming of bottom water in the deeper parts of the region took place a few hundred years after the surface water warming. The climatic amelioration was recorded by increased meltwater discharge and a slight increase in abundance of relatively warm diatoms around 10 600 BP at the time of the recession of the Fennoscandian ice sheet. An increase in the number of arctic/subarctic benthic foraminifera shows that the bottom water temperature during this period was still relatively low.  相似文献   
9.
Lake Boksehandsken, the largest lake on Jameson Land, central East Greenland, is situated 54 m a.s.l. and holds a long (6.3 m) and complex stratigraphy. It was analysed with respect to lithology, carbon content, 14C, micro- and macrofossils. The diamict material in the bottom is overlain by a fining-upwards sequence, possibly deposited close to a receding ice margin in a glaciomarine environment. These deposits are interpreted to have been formed at the time of the marine limit ( c . 70 m) in the area. In spite of a large series of 14C datings, very few of the obtained dates were considered reliable. This is because the sediments contain coal fragments and old redeposited plant remains. Based on a set of arguments and correlations to the surrounding glacial stratigraphy it is implied that the marine limit and deglaciation cannot be much older than 10,000 BP. The lithology of the lake sediments, in combination with occurrence of marine macrofossils. shows that deglaciation was succeeded by a (glacio)marine depositional environment. The lake was isolated from the sea at c . 9000 BP. followed by a short transgression and a final isolation at c . 8400 BP. This sequence of events is demonstrated by both litho-and biostratigraphy and possible causes are discussed. A later oscillation some time between 8000 and 7500 BP. evidenced by litho-, carbon-, pollen- and Pecliastrum stratigraphy, is interpreted as a regional climatic cooling possibly correlatable to a distinct δ18O minima in the Greenland ice cores.  相似文献   
10.
The construction and operation of a diver-operated suction sampler for sympagic fauna are described. An interchangeable sampling cylinder with a 0.5 mm sieve connected to a battery driven turbine pump makes it possible to'vacuum'predetermined areas of the ice under-surface, even if the surface is rugged and perforated by brine channels. Several samples can be obtained during one dive by using different sampling cylinders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号