首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   6篇
地质学   6篇
天文学   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2004年   2篇
  2000年   1篇
  1998年   2篇
  1988年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Hydrothermal vein minerals directly associated with native gold mineralization in the Muruntau vein system (Uzbekistan) have been studied for noble gas, carbon isotope and halogen chemistry of the trapped ore-related fluids. Helium trapped in early arsenopyrite 1, which has preserved the original fluid signature better than associated scheelite and quartz, indicates a small input from a mantle source (?5% of total He). However, the overwhelming majority of the He in the fluid (∼95%) is from crustal sources. The noble gases Ne, Kr and Xe in the sample fluids are dominated by gases of atmospheric origin. The carbon isotope (δ13C: −2.1‰ to −5.3‰) and halogen characteristics of the fluids (log Br/Cl: −2.64 to −3.23) lend further support for the activity of juvenile fluids during the main ore stage. The high proportion of crustal components in the ore-forming fluids may be explained by intense fluid-rock interaction and is also supported by previous Nd and Sr isotope studies. The involvement of a juvenile fluid component during the main stage of hydrothermal activity at Muruntau (∼275 Ma) can be linked to the emplacement of lamprophyric dikes at Muruntau, due to apparently overlapping ages for high-temperature alteration, related ore vein formation and intrusion of the dikes. The input of mantle-derived fluids, possibly related to the Hercynian collisional event in the western Tien Shan, stimulated intense fluid-rock interaction in the crust. In this context, the mantle-derived fluid should be considered as one possible carrier of metals. Significant amounts of external meteoric fluids circulating in fracture systems are interpreted to have modified the noble gas signature of fluid in quartz, mostly during late, low temperature fluid circulation.  相似文献   
2.
Noble gas concentrations and isotopic compositions have been determined for four submarine volcanic glasses from the Valu Fa Ridge (VFR) in the southern Lau Basin. The samples are the least differentiated ones from this area, and they display enrichments in fluid-mobile elements similar to the nearby island arc. 3He/4He ratios are slightly below average MORB (6.8–7.8 times atmospheric), whereas Ne, Ar, Kr, and Xe have isotopic compositions very similar to air. Together with previously published data from the Valu Fa Ridge and other spreading segments in the Lau Basin, our data show a systematic latitudinal variation of increasing Ne, Ar, Kr, and Xe abundances from north to south as well as Ne and Ar isotopic compositions changing from MORB-like to atmosphere-like in the same direction. Moreover, isotopic compositions and noble gas abundances of the lavas correlate strongly with Ba/Nb ratios and H2O concentrations. Based on these observations and mass balance arguments, we propose that the atmospheric noble gases come from the subducting oceanic crust and are not due to shallow contamination with air dissolved in seawater or assimilation of old crust. Our data suggest that the noble gases released from the subducting slab are atmospheric and thus contain little or no solar He and Ne. In addition to the fact that ratios of He to heavy noble gases are small in aged ocean crust, He has possibly fractionated from the other noble gases due to its higher diffusivity, and thus He transport from the subducting slab into the mantle wedge is probably insignificant. We propose that the 3He/4He ratios lower than MORB observed in the VFR lavas result from radiogenic ingrowth of He in a highly depleted, and hence degassed, mantle wedge after the enrichment of U and Th released from the downgoing slab.  相似文献   
3.
Fresh basalt glasses from the North Chile Ridge (NCR) in the southeastern Pacific have Ne isotopic compositions distinctly different from typical mid-ocean ridge basalts (MORB). In a three-isotope plot of 20Ne/22Ne vs. 21Ne/22Ne, the NCR data define a correlation line with a slope smaller than that of the MORB correlation line, i.e. their Ne composition is more nucleogenic than that of MORB. 3He/4He ratios are slightly lower than the MORB average, whereas in a few stepwise heating fractions very high 40Ar/36Ar ratios up to 28,000 are found. One model to explain the data assumes contamination of the NCR mantle source by material from the continental or oceanic crust, but in addition to difficulties with quantitatively reconciling the noble gas patterns with such a model it seems unable to account for some geochemical characteristics of NCR basalts reported earlier [Bach et al., Earth Planet. Sci. Lett. 142 (1996) 223–240], such as depletions in highly incompatible elements and unradiogenic Sr isotope compositions. Therefore we favor the scenario of a mantle source which was depleted and degassed previously, possibly as a residue from mantle melting beneath the southern East Pacific Rise that was transported to the NCR and melted again. The time during which such a depleted reservoir would have to be separated from the MORB mantle is estimated at 10–100 Ma based on U/Th–Ne systematics, in reasonable agreement with the time scale deduced from the formation history of the NCR and the temporal evolution of the southeast Pacific.  相似文献   
4.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   
5.
Combining cosmogenic 3He and 21Ne (3Hec and 21Nec) measurements on both pyroxene and olivine from the Pleistocene Bar Ten flows (85–107 ka) greatly increases our ability to evaluate the accuracy of 3Hec and 21Nec production rates and, therefore, 3Hec and 21Nec surface exposure ages. Comparison of 3Hec and 21Nec age-pairs yielded by experimentally determined production rates and composition-based model calculations indicates that the former give more accurate surface exposure ages than the latter in this study. However, experimental production rates should be adjusted to the composition of the minerals being analyzed to obtain the best agreement between 3Hec and 21Nec ages for any given sample. 21Nec/3Hec values are 0.400 ± 0.029 and 0.204 ± 0.014 for olivine and pyroxene, respectively, in Bar Ten lava flows, in agreement with previously published values, and indicate that 21Nec/3Hec in olivine and pyroxene is not affected by erosion and remains constant with latitude, elevation, and time (up to 10 Myr). Samples with 21Nec/3Hec that do not agree with these values may indicate the presence of non-cosmogenic helium and/or neon. The neon three-isotope diagram can also indicate whether or not all excess neon in mineral separates comes from cosmogenic sources. An error-weighted regression for olivine defines a spallation line [y = (1.033 ± 0.031)x + (0.09876 ± 0.00033)], which is indistinguishable from that for pyroxene (Schäfer et al., 1999). We have derived a production rate of 25 ± 8 at/g/yr for 21Nec in clinopyroxene (En43–44) based on the 40Ar/39Ar age of the upper Bar Ten flow. Our study indicates that the production rate of 21Nec in olivine may be slightly higher than previously determined. Cosmogenic 3He and 21Ne remain extremely useful, particularly when paired, in determining accurate eruption ages of young olivine- and pyroxene-rich basaltic lava flows.  相似文献   
6.
Two morphologic settings in the northwestern Argentine prone to giant mountain-front collapse-deeply incised narrow valleys and steep range fronts bordering broad piedmonts-were analyzed through detailed investigations of fossil landslides and related fluvio-lacustrine sediments. Nine different rhyodactic tephra layers were defined by geochemical fingerprinting of glass, morphology of pumice, stratigraphic relationships, and mineralogy. The age of three tephra could be determined either directly by 40Ar/39Ar dating or relatively by 14C dating of associated sediments: Paranilla Ash (723+/-89 ka), Quebrada del Tonco Ash ( approximately 30 ka), and Alemanía Ash ( approximately 3.7 ka). These units permit correlation of several spatially separate landslide deposits. Landslide deposits in narrow valleys were generated in the late Pleistocene between 40 and 25 ka and in the Holocene since ca. 5 ka and correspond to periods characterized by increased humidity in subtropical South America. In contrast, the age of large landslides in piedmont regions is significantly greater but more difficult to define by tephrochronology. However, selected deposits from this second environment have cosmogenic nuclide exposure ages of 140-400 ka. Because of the large distance of the collapsed mountain fronts from eroding streams and because of important Quaternary displacement along the mountain-bounding faults, we suggest that strong, low-frequency seismic activity is the most likely trigger mechanism for most of the landslides in this environment.  相似文献   
7.
Two rock avalanches in Troms County – the Grøtlandsura and Russenes – were selected as CRONUS-EU natural cosmogenic 10Be production-rate calibration sites because they (a) preserve large boulders that have been continuously exposed to cosmic irradiation since their emplacement; (b) contain boulders with abundant quartz phenocrysts and veins with low concentrations of naturally-occurring 9Be (typically < 1.5 ppb); and (c) have reliable minimum radiocarbon ages of 11,424 ± 108 cal yr BP and 10,942 ± 77 cal yr BP (1σ), respectively. Quartz samples (n = 6) from these two sites contained between 4.28 × 104 and 5.06 × 104 at 10Be/g using the 1.387 Myr 10Be half-life. Determination of these concentrations accounts for topographic and self-shielding, and effects on nuclide production due to isostatic rebound are shown to be negligible. Persistent, constant snow and moss cover cannot be proven, but if taken into consideration they may have reduced 10Be concentrations by 10%. Using the 10Be half-life of 1.387 Myr and the Stone scaling scheme, and accounting for snow- and moss-cover, we calculate an error-weighted mean total 10Be production rate of 4.12 ± 0.19 at/g/yr (1σ). A corresponding error-weighted mean spallogenic 10Be production rate is 3.96 ± 0.16 at/g/yr (1σ), respectively. These are in agreement within uncertainty with other 10Be production rates in the literature, but are significantly, statistically lower than the global average 10Be production rate. This research indicates, like other recent studies, that the production of cosmogenic 10Be in quartz is lower than previously established by other production-rate calibration projects. Similarly, our findings indicate that regional cosmogenic production rates should be used for determining exposure ages of landforms in order to increase the accuracy of those ages. As such, using the total 10Be production rate from our study, we determine an error-weighted mean surface-exposure age of a third rock avalanche in Troms County (the Hølen avalanche) to be 7.5 ± 0.3 kyr (1σ). This age suggests that the rock avalanche occurred shortly after the 8.2 kyr cooling event, just as the radiocarbon ages of the Grøtlandsura and Russenes avalanches confirm field evidence that those rock-slope failures occurred shortly after deglaciation.  相似文献   
8.
Mineral assemblages present within the Charmitan gold(-tungsten) quartz-vein mineralization have been investigated for their cathodoluminescence behaviour, chemical composition and noble gas isotope systematics. This inventory of methods allows for the first time a systematic reconstruction of the paragenetic relationships of quartz, scheelite, sulphides and native gold within the gold mineralization at Charmitan and provides the basis to utilise noble gas data in the discussion of sources and evolution of ore-forming fluids. The vein quartz is classified into four generations based on microscopic and cathodoluminescence investigations. Quartz I shows intense brittle deformation as associated scheelite I. Undeformed scheelite II overgrows scheelite I and has lower light rare earth element and higher intermediate rare earth element contents as well as higher strontium concentrations. Scheelite II is associated with the economic gold mineralization and formed during re-crystallisation and re-precipitation of material which was partly re-mobilised from early scheelite I during infiltration of gold-bearing fluids. Early stage native gold inclusions are often associated with stage 2 sulphides, scheelite II and bismuth tellurides and contain Ag (3.6–24.4 wt.%), Hg (≤1.0 wt.%) and Bi (≤0.2 wt.%). Later stage electrum grains occur in association with stage 3 sulphides and sulphosalts and contain Hg (<0.8 wt.%) and elevated Sb concentrations (up to 3.0 wt.%). Noble gas isotope data (3He/4He: 0.2-0.4 Ra) for hydrothermal ore fluids trapped in the gold-related sulphides and sulphosalts (stage 2 pyrite and arsenopyrite; stage 3 pyrite, sphalerite, galena and lead sulphosalts) suggest that diverse fluid sources were involved in the formation of the Charmitan gold deposit. These data are indicative of a small, but significant input of fluids from external, deep-seated (mantle and possibly lower crust) sources. A decrease in the input of mantle helium and an increasing role of crustal helium from early to later stages of the mineralization is suggested by the measured 3He/4He and 40Ar*/4He ratios. Sulphides from ore veins in meta-sedimentary rocks contain higher portions of meteoric fluids than those in intrusive rock types as indicated by their lower 3He/36Ar ratios. The 3He/36Ar ratios in the meta-sedimentary rocks agree well with ratios typical of gold mineralizations in the Tien Shan gold province completely hosted by meta-sedimentary sequences, indicating intense fluid-wall rock interaction.  相似文献   
9.
Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different threshold energies of their production reactions. If so, nuclide-specific scaling factors would be required.Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3°S). Altitude dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low-latitude location. However, because previous studies have documented anomalous altitude-dependent variations in 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated.We determined cosmogenic 21Ne/3He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.Despite the absence of independently determined ages for the studied lava surfaces, the consistency in the dataset should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.To our knowledge this is the first time that 36Cl has been measured in pyroxene. The Cl extraction method was validated by measuring 36Cl in co-existing plagioclase phenocrysts in one of the samples.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号