首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   2篇
测绘学   1篇
大气科学   10篇
地球物理   23篇
地质学   33篇
海洋学   12篇
天文学   11篇
自然地理   10篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   8篇
  2009年   10篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
1.
A two‐dimensional simulation model of travel distances of individual particles in a gravel‐bed river is presented. The model is based on a number of rules, which include particle size, entrainment, trajectory, distance of movement and entrapment. Particle interactions are controlled by resistance fields defined about each obstacle and critical elevation defined in the model. Resistance fields, particle dropping and critical elevation rules control particle interactions. The interaction rules cause the particles to develop pebble clusters, stone cells and transverse structures (transverse ribs). The simulated travel distances of individual particles are consistent with reported field results. Individual particle travel distances were simulated using two different models; one without interactions between the individual particles and the stationary bed and one with interactions. The case without interactions demonstrates the random nature of sediment transport, and narrow ranges of travel distances. Wider ranges of travel distances, similar to those for natural situations, were obtained for the cases with interactions. The more intense the interaction between the mobile stones and the stationary ones, the wider the range of distances of travel for a given particle size. Modelling the mean travel distance yielded a result similar to that published previously, which was based on empirical data. Well developed bed‐surface structures were obtained for relatively poorly sorted sediment with intense interactions between particles. Transverse structures developed when relatively large particles were allowed to move. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Olav Eklund  Alexey Shebanov 《Lithos》2005,80(1-4):229-247
The Åva ring complex is one of four Paleoproterozoic postcollisional shoshonitic ring complexes in southwestern Finland. It is composed of ring dykes of K-feldspar megacryst-bearing granite, mingled in places with a shoshonitic monzonite, and lamprophyre dykes crosscutting all the rocks in a radial pattern. A survey was undertaken to trace the magma chamber beneath the ring complex to date it and measure some intensive parameters to clarify the crystallisation conditions at depth before the granite was emplaced in the upper crust. Mineral separates were extracted from the core zones of K-feldspar megacrysts in the granite, heavy mineral fractions (including zircons) from these separates were used for P-T assessment and age determinations, and the results were compared to data obtained from bulk rock samples. It appears that magma differentiation took place in a midcrustal magma chamber (at 4 to 7 kbar) possibly 30 Ma before the emplacement of the ring complex in the upper crust (deep assemblage 1790 Ma, shallow assemblage 1760 Ma). Relatively high activity of the alkalies and a low oxygen fugacity characterised the midcrustal chamber. The juvenile Svecofennian crust was invaded by shoshonitic magmas from an enriched lithospheric mantle over a long period of time. Some of these magmas were stored and differentiated in the middle crust before transportation to the upper crust. The results also show that coarse-grained granites may provide evidence for several magmatic evolutionary episodes, e.g., differentiation and crystallisation in different environments prior to final emplacement.  相似文献   
3.
4.
Summary The Åland, rapakivi batholith consists of several granites that differ texturally and mineralogically from quartz-porphyritic varieties to rapakivi varieties with K-feldspar ovoids (wiborgites and pyterlites) and aplitic granites. Closely associated with the batholith there is a mafc magmatic series of dolerite dykes, norites, anorthosites and monzodiorites.The earliest major intrusive phase of the Åland, rapakivi batholith consists of quartzporphyritic hornblende rapakivi. This rock contains small amoeboidal mafc enclaves, labradorite megacrysts, quartz ocelli, amphibole-mantled xenoliths and irregular clots of granophyric granite. These disequilibrium features are products of mixing between basaltic and granitic magmas. Geochemical modelling indicates that the quartzporphyritic hornblende rapakivi is a mixture of 15% hi-Fe monzodiorite (mafic endmember) and 85% quartz-feldspar porphyry (felsic end-member). The monzodiorite is derived from a norite-anorthosite-monzodiorite series. The quartz-feldspar porphyry is produced by partial melting of the country rock caused by intrusions of hot basic magma.Structural, textural and geochemical features suggest that magma mixing was an important petrogenetic process in the formation of the earliest rapakivi granite intrusions in the Åland, rapakivi batholith. Petrographic evidence of magma mixing can also be found in the major intrusion of the batholith, the wiborgite rapakivi granites. Chemically the mixing is difficult to specify in these rocks because of a high proportion of felsic component. Zircon and apatite fractionation trends, however, indicate that the wiborgite rapakivis also contain components from a mixed source.
Magmamixing, die petrogenetische Verbindung zwischen Anorthositen und RapakiviGraniten, Åland, SW Finnland
Zusammenfassung Der Rapakivi Batholit von Åland besteht aus verschiedenen Graniten, die in ihrer Textur und Zusammensetzung das Feld von quarzporphyritischen über Rapakivigranite mit K-Feldspat-Ovoiden (Wiborgite und Pyterlite) und aplitischen Graniten abdecken. Eine mafische magmatische Serie von Dolerit-Gängen, Noriten, Anorthositen und Monzodioriten ist mit diesen Batholiten eng verbunden.Die erste größere Intrusivphase des Åland, Rapakivi Batholiten besteht aus quarzporphyritischem Hornblende Rapakivi. Dieses Gestein enhält kleine Amöboide, mafische Enklaven, Labradorit Megakristalle, Quarzocelli, Xenolithe mit Amphibolrändern und unregelmäßige Aggregate von granophyrischem Granit. Diese Produkte von Ungleichgewichts-Bedingungen gehen auf die Mischung zwischen basaltischen und granitischen Magmen zurück. Geochemische Modelle zeigen, daß der quarzporphyritische Hornblende-Rapakivi eine Mischung von 15%. eisenreichen Monzodiorit (mafisches Endglied) und 85% Quarz-Feldspatporphyr (felsisches Endglied) ist. Der Monzodiorit stammt von einer Norit-Anorthosit-Monzodiorit Serie. Der QuarzFeldspat-Porphyr entstand durch teilweise Aufschmelzung des Nebengesteines, die durch Intrusionen heißen basischen Magmas verursacht wurden.Strukturelle, texturelle und geochemische Daten zeigen, daß Magmamischung ein wichtiger petrogenetischer Prozeß der Bildung der frühesten Rapakivi-Granit-Intrusionen im Åland, Batholith waren. Petrographische Hinweise auf Magmamischung können auch in der größten Intrusion des Batholiths, dem Wiborg Rapakivi Granit, gefunden werden. Wegen des hohen Anteils felsischer Komponenten ist es schwierig, das Magmamixing in diesen Gesteinen chemisch zu quantifizieren. Zirkon- und Apatitfraktionierungs-Trends weisen jedoch darauf hin, daß auch die WiborgitRapakivis Komponenten aus einer gemischten Quelle enthalten.


With 5 figures  相似文献   
5.
O. Eklund  D. Konopelko  H. Rutanen  S. Fr  jd    A. D. Shebanov 《Lithos》1998,45(1-4):87-108
At least 14 small (1–11 km across) 1.8 Ga Svecofennian post-collisional bimodal intrusions occur in southern Finland and Russian Karelia in a 600-km-long belt from the Åland Islands to the NW Lake Ladoga region. The rocks range from ultramafic, calc-alkaline, apatite-rich potassium lamprophyres to peraluminous HiBaSr granites, and form a shoshonitic series with K2O+Na2O>5%, K2O/Na2O>0.5, Al2O3>9% over a wide spectrum of SiO2 (32–78%). Although strongly enriched in all rocks, the LILE Ba and Sr and the LREE generally define a decreasing trend with increasing SiO2. Depletion is noted for HFSE Ti, Nb and Ta. Available isotopic data show overlapping values for lamprophyres and granites within separate intrusions and a cogenetic origin is thus not precluded. Initial magmas (Mg#>65) in this shoshonitic association are considered to be generated in an enriched lithospheric mantle during post-collisional uplift some 30 Ma after the regional Svecofennian metamorphic peak. However, prior to the melting episode, the lithospheric mantle was affected by carbonatite metasomatism; more extensively in the east than in the west. The melts generated in the more carbonate-rich mantle are extremely enriched in P2O54%, F12,000 ppm, LILE: Ba9000 ppm, Sr7000 ppm, LREE: La600 ppm and Ce1000 ppm. The parental magma underwent 55–60% fractionation of biotite+clinopyroxene+apatite+magnetite+sphene whereupon intermediate varieties were produced. After further fractionation, 60–80%, of K-feldspar+amphibole+plagioclase±(minor magnetite, sphene and apatite), leucosyenites and quartz-monzonites were formed. In the west, where the source was less affected by carbonatite metasomatism, calc-alkaline lamprophyres (vogesites, minettes and spessartites) and equivalent plutonic rocks (monzonites) were formed. Removal of about 50% of biotite, amphibole, plagioclase, magnetite, apatite and sphene produced peraluminous HiBaSr granites. The impact of crustal assimilation is considered to be low. At about 1.8 Ga, the post-collisional shoshonitic magmatism brought juvenile material, particularly enriched in alkalis, LILE, LREE and F, into the crust. Although areally restricted, the regional distribution of the post-collisional intrusions may indicate that larger volumes of 1.8 Ga juvenile material resides in unexposed parts of the crust.  相似文献   
6.
A microprobe study of metalliferous sediment components   总被引:1,自引:0,他引:1  
Smectite aggregates, Fe-Mn micronodules, and fish debris from the coarse fraction of a metalliferous sediment sample from the Bauer Basin have been analyzed by microprobe. Both X-ray diffraction and bulk chemical analyses reveal that the smectite, an iron-rich and aluminum-poor nontronite, is the dominant phase. A linear programming solution to a series of mass balance equations indicates that the bulk sample is 70% smectite, 4% todorokite, 13% microlaminated material, and 1% fish debris. Two episodes of micronodule development are indicated by the presence of overgrowths of microlaminated iron-rich material over a homogeneous dense todorokite core. The two micronodule compositions can be explained by reaction of hydrothermally produced amorphous Fe-Mn oxyhydroxides with biogenous opal to form the calculated phase composition. The rare earth elements in the bulk sample can be explained by a similar diagenetic process which distributes rare earth elements of a seawater origin between cerium-enriched micronodules and cerium-depleted fish debris.  相似文献   
7.
The Ladoga, Russia, and adjacent Sulkava, southeastern Finland, metamorphic complexes are the two largest “granulite” provinces of the Svecofennian domain. In this area, the domain is composed of outer and inner zones. Sulkava is situated in the inner zone, which principally can be compared to the accretionary arc complex of Southern Finland. Ladoga is situated in the outer zone, which is correlated with the accretionary arc complexes of central and Western Finland. The complexes contain different metamorphic assemblages, which are caused by the different composition of the sedimentary protoliths: the rocks of the Sulkava metamorphic complex are higher in Al and K than those of the Ladoga Complex. Pb-Pb step leaching dating was used to determine the age of prograde sillimanite from both complexes. The dates thus obtained constrain metamorphic peaks for the Sulkava and Ladoga complexes at 1799 ± 19 Ma and 1878 ± 7 Ma, respectively, which is consistent with the U-Pb monazite ages of gneisses from both of the complexes. The differences in the ages of the metamorphic minerals from these complexes reflect the Early Svecofennian (1.89–1.86 Ga) and Late Svecofennian (1.83–1.79 Ga) metamorphic stages in the Fennoscandian Svecofennides.  相似文献   
8.
Growth Rates of Global Energy Systems and Future Outlooks   总被引:1,自引:0,他引:1  
The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems’ growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid ‘oil boom’-development—i.e. they mimic the most extreme historical events—their contribution to global energy supply by 2050 will be marginal.  相似文献   
9.
Abstract— We present a novel Markov‐Chain Monte‐Carlo orbital ranging method (MCMC) for poorly observed single‐apparition asteroids with two or more observations. We examine the Bayesian a posteriori probability density of the orbital elements using methods that map a volume of orbits in the orbital‐element phase space. In particular, we use the MCMC method to sample the phase space in an unbiased way. We study the speed of convergence and also the efficiency of the new method for the initial orbit computation problem. We present the results of the MCMC ranging method applied to three objects from different dynamical groups. We conclude that the method is applicable to initial orbit computation for near‐Earth, main‐belt, and transneptunian objects.  相似文献   
10.
A value of 0.001 is recommended by the United States Environmental Protection Agency (USEPA) for its groundwater‐to‐indoor air Generic Attenuation Factor (GAFG), used in assessing potential vapor intrusion (VI) impacts to indoor air, given measured groundwater concentrations of volatile chemicals of concern (e.g., chlorinated solvents). The GAFG can, in turn, be used for developing groundwater screening levels for VI given target indoor air quality screening levels. In this study, we examine the validity and applicability of the GAFG both for predicting indoor air impacts and for determining groundwater screening levels. This is done using both analysis of published data and screening model calculations. Among the 774 total paired groundwater‐indoor air measurements in the USEPA's VI database (which were used by that agency to generate the GAFG) we found that there are 427 pairs for which a single groundwater measurement or interpolated value was applied to multiple buildings. In one case, up to 73 buildings were associated with a single interpolated groundwater value and in another case up to 15 buildings were associated with a single groundwater measurement (i.e., that the indoor air contaminant concentrations in all of the associated buildings were influenced by the concentration determined at a single point). In more than 70% of the cases (390 of 536 paired measurements in which horizontal building‐monitoring well distance was recorded) the monitoring wells were located more than 30 m (and one up to over 200 m) from the associated buildings. In a few cases, the measurements in the database even improbably implied that soil gas contaminant concentrations increased, rather than decreased, in an upward direction from a contaminant source to a foundation slab. Such observations indicate problematic source characterization within the data set used to generate the GAFG, and some indicate the possibility of a significant influence of a preferential contaminant pathway. While the inherent value of the USEPA database itself is not being questioned here, the above facts raise the very real possibility that the recommended groundwater attenuation factors are being influenced by variables or conditions that have not thus far been fully accounted for. In addition, the predicted groundwater attenuation factors often fall far beyond the upper limits of predictions from mathematical models of VI, ranging from screening models to detailed computational fluid dynamic models. All these models are based on the same fundamental conceptual site model, involving a vadose zone vapor transport pathway starting at an underlying uniform groundwater source and leading to the foundation of a building of concern. According to the analysis presented here, we believe that for scenarios for which such a “traditional” VI pathway is appropriate, 10?4 is a more appropriately conservative generic groundwater to indoor air attenuation factor than is the EPA‐recommended 10?3. This is based both on the statistical analysis of USEPA's VI database, as well as the traditional mathematical models of VI. This result has been validated by comparison with results from some well‐documented field studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号