首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   11篇
  国内免费   2篇
测绘学   3篇
大气科学   10篇
地球物理   73篇
地质学   101篇
海洋学   20篇
天文学   30篇
自然地理   19篇
  2020年   10篇
  2019年   3篇
  2018年   10篇
  2017年   10篇
  2016年   13篇
  2015年   7篇
  2014年   12篇
  2013年   5篇
  2012年   14篇
  2011年   12篇
  2010年   11篇
  2009年   10篇
  2008年   11篇
  2007年   16篇
  2006年   5篇
  2005年   14篇
  2004年   5篇
  2003年   7篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1987年   5篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
1.
The rotational properties of sunspots during the time interval 1977–1986 (solar cycle 21) are studied; only sunspot groups older than 4 days have been the object of this research. We have looked systematically for any kind of anomaly or fine structure in the differential rotation latitudinal profile and any significant change occurring during the course of the solar cycle.Some latitudinal bands are found where the angular rotation rate, rather than decreases according to its overall tendency, increases or is constant with the latitude. The differential rotation profile is, therefore, finely structured. The whole fine-structure pattern is affected by a slow equatorward shift. It is suggested that these fine structure features are due to the Coriolis forces acting on the meridional motions associated with giant toroidal convective cells. Some of the properties of such cells are inferred.Moreover, while the spot zone shifts equatorward, it is found to expand poleward; this expansion occurs by the addition of new belts of activity on the poleward side of the pre-existing active zone. The active zone is therefore found to consist, at the maximum activity epoch, of three different belts of spot production, each of them being centered around a local maximum-activity latitude; each of these centroids of activity is hypothesized to lie where a couple of meridional streams - associated with giant cells - converge. The activity belts are independent of each other as far as their activation, maximum, and end time, as well as their lifetime and level of activity are concerned. The angular rotation rate is correlated, in each belt, with the local level of activity.  相似文献   
2.
3.
The present paper assesses the use of the supralittoral amphipod Talitrus saltator as a bioindicator of the effects of human trampling on the supralittoral sandy band. Samplings in delimited areas were carried out at sites subjected to different human impact. The results showed a strong negative correlation between the number of swimmers and the sandhopper population density, while there was no clear relationship between sandhopper abundance and the other factors considered: granulometry, compactness and organic carbon content of the sand, and trace metal contents in the sand and sandhoppers. A field test of trampling conducted in a confined space showed its direct negative effect on sandhopper survival. However, trace metal analysis confirmed the ability of T. saltator to bioaccumulate some elements (Hg, Zn, Cu, Cd). Our study demonstrates that T. saltator is a good bioindicator of human impact in the supralittoral zone of sandy shores.  相似文献   
4.
Geochemical data are presented for the meta-igneous, mafic-ultramafic complex near Finero. This complex is in contact with a phlogopite-bearing mantle peridotite and is subdivided into the Internal Gabbro unit, the Amphibole Peridotite unit, and the External Gabbro unit. The Internal Gabbro and the Amphibole Peridotite units consist of coarse-grained, chemically heterogeneous cumulates, whereas the External Gabbro unit is generally massive, chemically more uniform and approximately representative of the residual melt with MgO contents between 6.6 and 9.1% and Mg numbers between 38 and 58. Both whole-rock and mineral contents of Ni and Cr are significantly higher (at similar Mg numbers) in the Amphibole Peridotite unit than in the Internal Gabbro unit. The most straightforward interpretation of this is that the Amphibole Peridotite unit accumulated after the influx of fresh mafic (or ultramafic) magma into the magma chamber. Major-element chemical trends are continuous from the Amphibole Peridotite unit to the External Gabbro unit and are consistent with closed-system fractionation with no further addition of magma or contamination by wall or roof rock assimilation. In the External Gabbro unit, total FeO and TiO2 contents are strongly correlated with each other (and with P2O5 and Zr) and reach values as high as 19 and 4%, respectively, indicating an advanced degree of crystal fractionation along a tholeftic trend. The External Gabbro samples have generally smooth normalized trace element patterns, which are consistent with being representative of a liquid composition. The residual nature of the External Gabbro magma is also indicated by negative Eu and Sr anomalies, clear evidence for prior feldspar fractionation. REE patterns are otherwise indistinguishable from N-type MORB, but Th and U are significantly more depleted than in MORB. This Th and U depletion is similar to that found in olivine basalts and picrites on Iceland and Hawaii; its origin is not well understood. No evidence is seen for any assimilation of crystal material, in sharp contrast with the situation of the igneous complex in Val Sesia near Balmuccia, where the magma composition is dominated by assimilation of crust. We suggest that the heat provided by at most two injections of magma near Finero was insufficient to induce crystal anatexis, in contrast with the excess heat supplied by multiple magma injections at Balmuccia.  相似文献   
5.
Otavite, witherite, calcite, strontianite, hydrozincite and hydrocerussite nucleation was induced by CO2 diffusion through a polyethylene membrane into a metal bearing solution. Nucleation and ongoing precipitation was followed at 25 ± 1 °C by the chemical evolution of the solution and the consumption of sodium hydroxide (pH-stat conditions). X-ray diffraction patterns as well as FT-infrared and Raman spectra confirmed the formation of well crystallized solids, except for less crystalline hydrozincite. In several experiments simonkolleite and laurionite precipitated concurrently with hydrozincite and hydrocerussite. The carbonate end-member minerals, smithsonite and cerussite, however were not formed. Carbonate minerals crystallized as spherical aggregates of thin layered otavite, spherical orientated witherite needles, rhombohedral calcite, pseudo-hexagonal strontianite laths, fibrous lumps of hydrozincite and planar hexagonal hydrocerussite crystals. Crystal and aggregate sizes range between 1 and 100 μm. Nucleation occurred at well defined reaction times and distinct critical supersaturation indices (SIcrit). The time for nucleation at constant pH decreased as the initial metal concentration increased for a given solid. The SIcrit values decreased in the order of hydrocerussite (3.2), otavite (2.5), strontianite (1.6), witherite (0.9) and calcite (0.7).  相似文献   
6.
The transfer equations for the Stokes parameters, as derived under the assumption of LTE and in the general case of anomalous Zeeman multiplet, are solved by a perturbative method that reduces the system of four coupled linear differential equations to an iterative series of well known linear differential equations. The perturbation parameter turns out to be of the order of magnitude of the ratio of the Larmor frequency to the line Doppler half-width, so that the method appears to be particularly suitable for small magnetic fields.Some qualitative results on the importance of Faraday rotation and the orders of magnitude of the line profiles of the Stokes parameters are obtained.  相似文献   
7.
This paper investigates the dynamic behavior and the seismic effectiveness of a non‐conventional Tuned Mass Damper (TMD) with large mass ratio. Compared with conventional TMD, the device mass is increased up to be comparable with the mass of the structure to be protected, aiming at a better control performance. In order to avoid the introduction of an excessive additional weight, masses already present on the structure are converted into tuned masses, retaining structural or architectural functions beyond the mere control function. A reduced order model is introduced for design purposes and the optimal design of a large mass ratio TMD for seismic applications is then formulated. The design method is specifically developed to implement High‐Damping Rubber Bearings (HDRB) to connect the device mass to the main structure, taking advantage of combining stiffness and noticeable damping characteristics. Ground acceleration is modeled as a Gaussian random process with white noise power spectral density. A numerical searching technique is used to obtain the optimal design parameter, the frequency ratio alpha, which minimizes the root‐mean‐square displacement response of the main structure. The study finally comprises shaking table tests on a 1:5 scale model under a wide selection of accelerograms, both artificial and natural, to assess the seismic effectiveness of the proposed large mass ratio TMD. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
We evaluate the performance of a hand‐held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe‐Ni‐rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non‐destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.  相似文献   
9.
An effective approach to understanding the dynamics of explosive volcanic eruptions and the conduit systems that drive them is through synergy of multiple data sets. Three data sets that lend themselves to ease of integration are seismic, infrasonic and thermal. Although approaches involving these data have been used to record volcanological phenomena since 1862, 1955 and 1965, respectively, their integrated use has only developed since 1999. When combined, these three data sets allow constraint of shallow system geometry and the dynamics of the explosive events that occur within that system. Using Stromboli volcano (Italy) as a case study, we review the complete range of geochemical and geophysical studies that can be applied. In doing so, we aim to show how integration of these diverse studies allows insights into a plumbing system and the dynamics of the eruptive activity that the system feeds. When combined at Stromboli, these data provide constraint of multiple system parameters including chamber depths, gas and magma fluxes, shallow system magma residence times, explosion source depths, and the rise/ejection velocities of ascending gas slugs and ejecta. In turn, these results allow various conduit and eruption dynamic models to be applied and tested.The persistent and repeated mildly explosive events that characterize Stromboli have been modeled in terms of the coalescence of gas within the magma to form large gas slugs that ascend the remaining portion of the conduit to burst at the free surface. Our integrated seismic, infrasonic and thermal data sets indicate that gas coalescence occurs at a depth of ∼260 m, with a typical event frequency of ∼9/h. Infrasonic and thermal data show the explosion source to be located 20-220 m below the vent. Thermal data give emission velocities for the ejected fragments of 8-20 m/s, which converts to gas jet velocities of 23-39 m/s. Tracking these parameters in space and time shows that, although eruptions at Stromboli can be grouped into two characteristic types (simple and complex-each of which characterizes a particular crater, NE and SW, respectively), events within each type show significant short-term variability. The system does, however, appear robust, maintaining its characteristic strombolian eruption style after significant effusive phases and more energetic explosive events.  相似文献   
10.
Mineralogy and Petrology - Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号