首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
地球物理   9篇
地质学   34篇
海洋学   3篇
天文学   2篇
自然地理   5篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
  1985年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有53条查询结果,搜索用时 148 毫秒
1.
2.
Lake Bonneville was a climatically sensitive, closed-basin lake that occupied the eastern Great Basin during the late Pleistocene. Ongoing efforts to refine the record of lake level history are important for deciphering climate conditions in the Bonneville basin and for facilitating correlations with regional and global records of climate change. Radiocarbon data from this and other studies suggest that the lake oscillated at or near the Provo level much longer than depicted by current models of lake level change. Radiocarbon data also suggest that the lake dropped from threshold control much more rapidly than previously supposed. These revisions to the Lake Bonneville hydrograph, coupled with independent evidence of climate change from vegetation and glacial records, have important implications for conditions in the Bonneville basin and during the Pleistocene to Holocene transition.  相似文献   
3.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   
4.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   
5.
Peridotite xenoliths entrained in Plio-Pleistocene alkali basalts from Sardinia represent fragments of the uppermost lithospheric mantle, and are characterised by an anhydrous four-phase mineral assemblage. They range in bulk rock composition from fertile spinel-lherzolites to residual spinel-harzburgites. The Sr-Nd isotope and trace element composition of clinopyroxene mineral separates varies between LREE-depleted samples with 87Sr/86Sr as low as 0.70262 and 143Nd/144Nd up to 0.51323 and LREE-enriched samples with 87Sr/86Sr up to 0.70461 and 143Nd/144Nd down to 0.51252. The available data suggest that all the studied peridotite samples suffered variable degrees of partial melting during Pre-Mesozoic times (based on Nd model ages relative to CHUR and DMM). The overprinted enrichment is related to a subsequent metasomatism, induced by fluids rising through the lithosphere that preferentially percolated the originally most depleted domains. Despite the occurrence of orogenic volcanism in the area, preferential enrichment in elements typically associated with slab derived fluids/melts (K, Rb, Sr, Th) relative to LREE has not been detected, and metasomatism seems to be more likely related to the infiltration of highly alkaline basic melts characterised by an EM-like Sr-Nd isotopic composition. Similar 87Sr/86Sr-143Nd/144Nd compositions, characterised by an EM signature, are observed in anorogenic mafic lavas and peridotite xenoliths from widespread localities within the "European" plate, whereas they have not previously been recorded in peridotite xenoliths and associated alkaline mafic lavas from the stable "African" lithospheric domain.  相似文献   
6.
Marjorie Powell 《Lithos》1978,11(2):99-120
During slow cooling of plutonic igneous rocks the initial high temperature minerals crystallised from the magma continue to re-equilibrate with each other to varying degrees with falling temperature. Thermodynamic studies of mineral equilibria are used to calculate crystallisation temperatures for the cumulus assemblage ol-cpx-mt-ne-fsp in the Igdlerfigssalik syenites and to calculate composition parameters for the original magmas. Cumulus crystallisation occurred in the range 900–980°C. Nepheline and alkali feldspar continued to equilibrate in some rocks down to 650°C, while macroscopic exsolution in alkali feldspar and titanomagnetite continued to temperatures below 600°C. Oxygen activities during the crystallisation of the cumulus minerals were below magnetite-wustite.  相似文献   
7.
Editorial     
In 2009 the Journal enters its 50th year of publication –our "golden anniversary"! This is certainly good cause for celebrationand we will be doing just that in various ways throughout theyear. Volume 1 was published in February 1960. The very first paperby P.J. Wyllie and O.F. Tuttle on "The system CaO-CO2-H2O andthe origin of carbonatites" [J.Petrology 1:1-46] provided anidea for a special symposium at the 2009 Goldschmidt conference"Challenges to Our Volatile  相似文献   
8.
Post-collisional (23–8 Ma), potassium-rich (including ultrapotassic and potassic) mafic magmatic rocks occur within the north–south-trending Xuruco lake–Dangre Yongcuo lake (XDY) rift in the Lhasa terrane of the southern Tibetan Plateau, forming an approximately 130-km-long semi-continuous magmatic belt. They include both extrusive and intrusive facies. Major and trace element and Sr–Nd–Pb isotopic data are presented for all of the known exposures within the XDY rift. The potassium-rich, mafic igneous rocks are characterized by high MgO (5.9–10.8 wt.%), K2O (4.81–10.68 wt.%), Ba (1,782–5,618 ppm) and Th (81.3–327.4 ppm) contents, and relatively high SiO2 (52.76–58.32 wt.%) and Al2O3 (11.10–13.67 wt.%). Initial Sr isotopic compositions are extremely radiogenic (0.712600–0.736157), combined with low (206Pb/204Pb) i (18.28–18.96) and (143Nd/144Nd) i (0.511781–0.512046). Chondrite-normalized rare earth element patterns display relatively weak negative Eu anomalies. Primitive mantle-normalized incompatible trace element patterns exhibit strong enrichments in large ion lithophile elements relative to high-field-strength elements and display strongly negative Ta–Nb–Ti anomalies. The combined major and trace element and Sr–Nd–Pb isotopic characteristics of the K-rich igneous rocks suggest that the primitive magmas were produced by 1–10 % partial melting of an asthenospheric mantle source enriched by both fluids and partial melts derived from Indian passive continental margin sediments subducted into the shallow mantle as a consequence of the northward underthrusting of the Indian continental lithosphere beneath Tibet since the India–Asia collision at ~55 Ma. The best-fit model results indicate that a melt with trace element characteristics similar to those of the K-rich rocks could be generated by 8–10 % partial melting of a metasomatized mantle source in the south and 1–2 % melting in the north of the XDY rift. Trace element and Sr–Nd–Pb isotopic modeling indicate that the proportion of fluid derived from the subducted sediments, for which we use as a proxy the Higher Himalayan Crystalline Sequence (HHCS), in the mantle source region increases from north (rear-arc) to south (front-arc), ranging from 0 to 5 %, respectively. Correspondingly, the proportion of the melt derived from the subducted HHCS in the source increases from north (2 %) to south (15 %). The increasing proportion of the fluid and melt component in the mantle source from north to south, together with a southward decreasing trend in the age of the K-rich magmatism within the XDY rift, is inferred to reflect rollback of the subducted Indian lithospheric mantle slab during the period 25–8 Ma. Slab rollback may be linked to a decreasing convergence rate between India and Asia. As a consequence of slab rollback at 25 Ma beneath the Lhasa terrane, its geodynamic setting was transformed from a convergent (55–25 Ma) to an extensional (25–8 Ma) regime. The occurrence of K-rich magmatism during the period 25–8 Ma is a consequence of the decompression melting of an enriched mantle source, which may signal the onset of extension in the southern Tibetan Plateau and provide a petrological record of the extension process.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号