首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   1篇
大气科学   4篇
地球物理   2篇
地质学   3篇
海洋学   1篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2005年   2篇
  2001年   1篇
  1998年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化   总被引:7,自引:4,他引:3  
刘军  武广  钟伟  朱明田 《岩石学报》2010,26(5):1450-1466
黑龙江省多宝山斑岩铜(钼)矿床位于小兴安岭西北部,是中亚-兴蒙造山带北东段最大的斑岩型铜(钼)矿床,矿体产于加里东期花岗闪长岩和中奥陶世多宝山组安山岩、凝灰岩中。铜矿化与绢英岩化关系密切,而钼矿化主要产于钾硅化带中。矿区内脉体广泛发育,从早到晚依次为:石英+钾长石脉、早阶段石英+辉钼矿脉、晚阶段石英+辉钼矿脉、石英+黄铜矿+黄铁矿脉、石英+黄铁矿脉和方解石+石英脉。脉石英中广泛发育流体包裹体,包括气液两相水溶液包裹体(W型)、纯气相包裹体(G型)、含CO2三相包裹体(C型)及含子矿物多相包裹体(S型)。石英+钾长石脉中仅发育气液两相包裹体,均一温度峰值﹥550℃、盐度为16.2%~18.1%NaCleqv;早阶段石英+辉钼矿脉中发育大量气液两相包裹体和含子矿物多相包裹体,并见少量含CO2三相包裹体,均一温度集中在350~450℃、盐度变化于1.1%~﹥65.3%NaCleqv;晚阶段石英+辉钼矿脉体发育大量含CO2三相包裹体和含子矿物多相包裹体,另有少量气液两相包裹体,均一温度集中在270~350℃、盐度为0.8%~42.4%NaCleqv;石英+黄铜矿+黄铁矿脉中发育丰富的气液两相包裹体,见少量含子矿物多相包裹体、含CO2三相包裹体和纯气相包裹体,均一温度峰值在230~330℃、盐度为0.8%~42.4%NaCleqv;石英+黄铁矿脉和方解石+石英脉中仅发育气液两相包裹体,均一温度变化于110~200℃、盐度为3.9%~8.4%NaCleqv。成矿流体在古深度4.1km左右,温度在230~450℃之间、压力在10~41MPa之间,发生了强烈的流体沸腾作用,大量CO2等气体从流体中释放出来,黄铜矿、斑铜矿和辉钼矿等巨量沉淀下来,形成了铜(钼)矿体。成矿流体总体上属H2O-CO2-NaCl体系,多期次的流体沸腾作用是该矿床的主要成矿机制。  相似文献   
3.
SD-1型数字大地电磁记录系统   总被引:1,自引:0,他引:1       下载免费PDF全文
SD-1型数字大地电磁测深仪是一种用途较广的地球物理勘探仪器,可用于研究地壳上地幔结构,普查石油、天然气田构造,寻找热田及监视地震前地壳电阻率随时间的变化。该仪器已于1982年8月通过国家鉴定。鉴定以后又在华南地区作了大地电磁测深工作。本文只是简述一下仪器的基本结构、几个主要的技术问题及鉴定前后用该仪器所  相似文献   
4.
A regional classification of shoreline segments along the Alaskan Beaufort Sea Coast was developed as the basis for quantifying coastal morphology, lithology, and carbon and mineral sediment fluxes. We delineated 48 mainland segments totaling 1,957 km, as well as 1,334 km of spits and islands. Mainland coasts were grouped into five broad classes: exposed bluffs (313 km), bays and inlets (235 km), lagoons with barrier islands (546 km), tapped basins (171 km) and deltas (691 km). Sediments are mostly silts and sands, with occasional gravel, and bank heights generally are low (2–4 m), especially for deltas (<1 m). Mean annual erosion rates (MAER) by coastline type vary from 0.7 m/year (maximum 10.4 m/year) for lagoons to 2.4 m/year for exposed bluffs (maximum 16.7 m/year). MAERs are much higher in silty soils (3.2 m/year) than in sandy (1.2 m/year) to gravelly (–0.3 m/year) soils. Soil organic carbon along eroding shorelines (deltas excluded) range from 12 to 153 kg/m2 of bank surface down to the water line. We assume carbon flux out from depositional delta sediments is negligible. Across the entire Alaskan Beaufort Sea Coast, estimated annual carbon input from eroding shorelines ranges from –47 to 818 Mg/km/year (Metric tones/km/year) across the 48 segments, average 149 Mg/km/year (for 34 nondeltaic segments), and total 1.8×105 Mg/year. Annual mineral input from eroding shorelines ranges from –1,863 (accreting) to 15,752 Mg/km/year, average 2,743 Mg/km/year, and totals 3.3 ×106 Mg/year.  相似文献   
5.
Arctic permafrost coasts are sensitive to changing climate. The lengthening open water season and the increasing open water area are likely to induce greater erosion and threaten community and industry infrastructure as well as dramatically change nutrient pathways in the near-shore zone. The shallow, mediterranean Arctic Ocean is likely to be strongly affected by changes in currently poorly observed arctic coastal dynamics. We present a geomorphological classification scheme for the arctic coast, with 101,447?km of coastline in 1,315 segments. The average rate of erosion for the arctic coast is 0.5?m? year?1 with high local and regional variability. Highest rates are observed in the Laptev, East Siberian, and Beaufort Seas. Strong spatial variability in associated database bluff height, ground carbon and ice content, and coastline movement highlights the need to estimate the relative importance of shifting coastal fluxes to the Arctic Ocean at multiple spatial scales.  相似文献   
6.
Extremely ice-rich syngenetic permafrost, or yedoma, developed extensively under the cold climate of the Pleistocene in unglaciated regions of Eurasia and North America. In Alaska, yedoma occurs in the Arctic Foothills, the northern part of the Seward Peninsula, and in interior Alaska. A remarkable 33-m-high exposure along the lower Itkillik River in northern Alaska opened an opportunity to study the unmodified yedoma, including stratigraphy, particle-size distribution, soil carbon contents, morphology and quantity of segregated, wedge, and thermokarst-cave ice. The exposed permafrost sequence comprised seven cryostratigraphic units, which formed over a period from > 48,000 to 5,000 14C yr BP, including: 1) active layer; 2) intermediate layer of the upper permafrost; 3–4) two yedoma silt units with different thicknesses of syngenetic ice wedges; 5) buried peat layer; 6) buried intermediate layer beneath the peat; and 7) silt layer with short ice wedges. This exposure is comparable to the well known Mus-Khaya and Duvanny Yar yedoma exposures in Russia. Based on our field observations, literature sources, and interpretation of satellite images and aerial photography, we have developed a preliminary map of yedoma distribution in Alaska.  相似文献   
7.
Studies from 1994–1998 on the TananaFlats in central Alaska reveal that permafrostdegradation is widespread and rapid, causing largeshifts in ecosystems from birch forests to fens andbogs. Fine-grained soils under the birch forest areice-rich and thaw settlement typically is 1–2.5 mafter the permafrost thaws. The collapsed areas arerapidly colonized by aquatic herbaceous plants,leading to the development of a thick, floatingorganic mat. Based on field sampling of soils,permafrost and vegetation, and the construction of aGIS database, we estimate that 17% of the study area(263,964 ha) is unfrozen with no previous permafrost,48% has stable permafrost, 31% is partiallydegraded, and 4% has totally degraded. For thatportion that currently has, or recently had,permafrost (83% of area), 42% has been affected bythermokarst development. Based on airphoto analysis,birch forests have decreased 35% and fens haveincreased 29% from 1949 to 1995. Overall, the areawith totally degraded permafrost (collapse-scar fensand bogs) has increased from 39 to 47% in 46 y. Based on rates of change from airphoto analysis andradiocarbon dating, we estimate 83% of thedegradation occurred before 1949. Evidence indicatesthis permafrost degradation began in the mid-1700s andis associated with periods of relatively warm climateduring the mid-late 1700s and 1900s. If currentconditions persist, the remaining lowland birchforests will be eliminated by the end of the nextcentury.  相似文献   
8.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号