首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
天文学   1篇
  2011年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 140 毫秒
1
1.
Hydrogen solubility and hydroxyl substitution mechanism in olivineat upper-mantle conditions are not only a function of pressure,temperature, water fugacity and hydrogen fugacity, but are alsoinfluenced by silica activity. Olivine synthesized in equilibriumwith magnesiowüstite displays hydroxyl stretching bandsin the wavenumber range from 3640 to 3430 cm–1. In contrast,olivine in equilibrium with orthopyroxene shows absorption bandsin a narrower wavenumber range from 3380 to 3285 cm–1.The two fundamentally different spectra are assigned to hydroxylin tetrahedral and octahedral sublattices, respectively. Olivinein equilibrium with orthopyroxene is also less capable of incorporatinghydroxyl, relative to olivines in equilibrium with magnesiowüstite,by about a factor of ten. A comparison of spectra obtained aspart of this study with hydroxyl spectra of natural mantle olivinesshows that the latter display hydroxyl stretching patterns reminiscentof equilibrium with magnesiowüstite, although undoubtedlyolivine in the Earth’s mantle coexists with orthopyroxene.This may be attributed to a metasomatic overprint by a low-silicafluid and/or melt that was in reaction relationship with orthopyroxene.A likely metasomatic agent is a carbonatitic melt. When carbonatiticmelts decompose to oxides and CO2, they may temporarily imposea low-aSiO2 environment inherited by the olivine structure.If this suggestion proves true, Fourier transform IR spectroscopymay be used to fingerprint metasomatic episodes in the lithosphericmantle. KEY WORDS: FTIR spectrometry; olivine; mantle; metasomatism; water  相似文献   
2.
Fourier Transform infrared (FTIR) absorption spectra of hydroxylwere measured on olivine phenocrysts from hydrous basaltic meltsthat originated in island-arc tectonic settings. The basalticmelts encompass a wide range of silica activities from orthopyroxene-saturatedhypersthene-normative to nepheline-normative compositions. Theintensities and wavenumber placement of hydroxyl absorptionbands correlate with the degree of silica saturation of theparent melt from which the olivine crystallized. Olivines fromsilica-undersaturated nepheline-normative melts absorb IR radiationin the wavenumber range 3430–3590 cm–1 (Group 1).In contrast, olivines from orthopyroxene-saturated boniniticmelts exhibit hydroxyl absorption bands in the wavenumber range3285–3380 cm–1 (Group 2). Olivines crystallizedat intermediate silica activities exhibit a combination of thetwo groups of hydroxyl IR bands, where the proportion of Group2 bands increases with increasing silica saturation of the parentmelt. The positions of hydroxyl absorption peaks observed herefor natural samples are consistent with previous measurementson experimentally annealed olivines. Thus protonation experimentscan be employed to make spectroscopically dry olivine structuresvisible by IR, yielding information on the silica saturationof the parental magmas. Hydroxyl concentrations in the studiedolivines were estimated to be 1–2 ppm, corresponding toan olivine–melt partition coefficient of (1·0 ±0·3) x 10–4. KEY WORDS: nominally anhydrous minerals; olivine; water; mantle; silica activity; melt inclusions  相似文献   
3.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号