首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
大气科学   3篇
地球物理   4篇
地质学   10篇
天文学   37篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   3篇
  1977年   1篇
  1955年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   
2.
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data-gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.  相似文献   
3.
The structure and propagation of precipitation cores on a variety of cold fronts are described. The shapes of the cores, and their orientations with respect to the synoptic-scale front, are not always uniform either between fronts or within the same front. Interactions between cores depend on their proximity and relative strength. Large gaps between precipitation cores move along the cold front at a slower speed than the cores and affect the evolution of the precipitation cores. The spacing of precipitation cores, the height of the head of the density current associated with the cold front, and the strength of the cold front are positively correlated with precipitation strength. This suggests that interactions between cores are strongly influenced by precipitation.Current theories for precipitation cores on narrow cold-frontal rainbands cannot account for these observations. A new mechanism is proposed based on a positive feedback between the diabatic cooling produced by the melting and evaporation of precipitation, the head of the density current, and the strength of the front.  相似文献   
4.
We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun–Jupiter–Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.  相似文献   
5.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   
6.
Abstract

The Ninth Conference of the Parties (COP-9) decided to adopt an accounting system based on expiring carbon credits to address the problem of non-permanent carbon storage in forests established under the Clean Development Mechanism (CDM). This article reviews and discusses carbon accounting methods that were under consideration before COP-9 and presents a model which calculates the minimum area that forest plantation projects should reach to be able to compensate CDM transaction costs with the revenues from carbon credits. The model compares different accounting methods under various sets of parameters on project management, transaction costs, and carbon prices. Model results show that under current carbon price and average transaction costs, projects with an area of less than 500 ha are excluded from the CDM, whatever accounting method is used. Temporary crediting appears to be the most favorable approach to account for non-permanent carbon removal in forests and also for the feasibility of smaller projects. However, lower prices for credits with finite lifetimes may prevent the establishment of CDM forestry projects. Also, plantation projects with low risk of unexpected carbon loss and sufficient capacity for insuring or buffering the risk of carbon re-emission would benefit from equivalence-adjusted average carbon storage accounting rather than from temporary crediting.  相似文献   
7.
Abstract— This study serves as a proof‐of‐concept for the technique of using visible‐near infrared (VNIR), short‐wavelength infrared (SWIR), and thermal infrared (TIR) spectroscopic observations to map impact‐exposed subsurface lithologies and stratigraphy on Earth or Mars. The topmost layer, three subsurface layers and undisturbed outcrops of the target sequence exposed just 10 km to the northeast of the 23 km diameter Haughton impact structure (Devon Island, Nunavut, Canada) were mapped as distinct spectral units using Landsat 7 ETM+ (VNIR/SWIR) and ASTER (VNIR/SWIR/TIR) multispectral images. Spectral mapping was accomplished by using standard image contrast‐stretching algorithms. Both spectral matching and deconvolution algorithms were applied to image‐derived ASTER TIR emissivity spectra using spectra from a library of laboratory‐measured spectra of minerals (Arizona State University) and whole‐rocks (Ward's). These identifications were made without the use of a priori knowledge from the field (i.e., a “blind” analysis). The results from this analysis suggest a sequence of dolomitic rock (in the crater rim), limestone (wall), gypsum‐rich carbonate (floor), and limestone again (central uplift). These matched compositions agree with the lithologic units and the pre‐impact stratigraphic sequence as mapped during recent field studies of the Haughton impact structure by Osinski et al. (2005a). Further conformation of the identity of image‐derived spectra was confirmed by matching these spectra with laboratory‐measured spectra of samples collected from Haughton. The results from the “blind” remote sensing methods used here suggest that these techniques can also be used to understand subsurface lithologies on Mars, where ground truth knowledge may not be generally available.  相似文献   
8.
The position of pre-main-sequence or protostars in the Hertzsprung–Russell diagram is often used to determine their mass and age by comparison with pre-main-sequence evolution tracks. On the assumption that the stellar models are accurate, we demonstrate that, if the metallicity is known, the mass obtained is a good estimate. However, the age determination can be very misleading, because it is significantly (generally different by a factor of 2 to 5) dependent on the accretion rate and, for ages less than about 106 yr, the initial state of the star. We present a number of accreting protostellar tracks that can be used to determine age if the initial conditions can be determined and the underlying accretion rate has been constant in the past. Because of the balance established between the Kelvin–Helmholtz, contraction time-scale and the accretion time-scale, a pre-main-sequence star remembers its accretion history. Knowledge of the current accretion rate, together with an HR-diagram position, gives information about the rate of accretion in the past, but does not necessarily improve any age estimate. We do not claim that ages obtained by comparison with these particular accreting tracks are likely to be any more reliable than those from comparisons with non-accreting tracks. Instead, we stress the unreliability of any such comparisons, and use the disparities between various tracks to estimate the likely errors in age and mass estimates. We also show how a set of coeval accreting objects do not appear coeval when compared with non-accreting tracks. Instead, accreting pre-main-sequence stars of around a solar mass are likely to appear older than those of either smaller or larger mass.  相似文献   
9.
In this study, we used boundary layer heights derived from lidar in Romania to validate the Weather Research Forecast (WRF) model improved by ARIA Technologies SA in the framework of ROMAIR LIFE project. Lidar retrievals were also compared to the retrievals from meteorological data, both modeled (Global Data Assimilation System; GDAS) and measured (microwave radiometry). Both the gradient and the wavelet covariance methods were used to compute the boundary layer height (BLH) from the range corrected lidar signal, and their equivalence was shown. The analysis was performed on 102 datasets, spread over all seasons and 3 years (2009–2011). A good agreement was found for the remote sensors (lidar and microwave radiometer) which are co-located and measure simultaneously. The correlation of the measured boundary layer height and the modelled one was 0.66 for the entire dataset, and 0.73 when considering daytime data, i.e., for a well defined boundary layer. A systematic underestimation of the boundary layer height by the WRF during non-convective periods (nocturne, stable atmosphere) was found.  相似文献   
10.
Mangrove forests dominate many tropical coastlines and are one of the most bio‐diverse and productive environments on Earth. However, little is known of the large‐scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong River Delta, Vietnam; a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe three different dynamics of the mangrove fringe: in the southwest part of the fringe, near a deltaic distributary where the fringe boundary is linear, the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. In the northeast part of the fringe, near another distributary, the canopy expands at a much lower rate with low NDVI values. In the fringe center, far from the river mouths, the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We ascribe these different dynamics to wave action and southwest longshore transport triggered by energetic northeasterly monsoons during winter. We further link the large‐scale dynamics of the fringe to small‐scale physical disturbances (waves, erosion and deposition) that might prevent the establishment of mangrove seedlings. Based on these results, we include mangrove encroachment in an already published conceptual model of progradation of the Mekong River Delta. We conclude that high NDVI values and a constantly linear vegetation–water interface are indicative of stable mangrove canopies undergoing fast expansion, probably triggered by sediment availability at the shore. Our results can be applied more generally to mangrove forests growing in minerogenic and high tidal range environments with high sediment inputs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号