首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  国内免费   1篇
大气科学   2篇
地球物理   15篇
地质学   15篇
海洋学   13篇
天文学   3篇
自然地理   4篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2012年   4篇
  2010年   5篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1980年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
The sea surface is an important habitat for the developmental stages (eggs and larvae) of many fish and invertebrates; it is also a concentration point for anthropogenic contaminants entering the sea. Studies were conducted to determine the extent to which the sea surface of Puget Sound was toxic to the early life history stages of fish. Three urban bays with suspected contamination, a rural reference bay, and a Central Sound site were compared. Surface-dwelling eggs and organisms (zooneuston) were collected with a surface-skimming neuston net and their densities enumerated. Sand sole (Psettichthys melanostictus) embryos were exposed in the field and laboratory to the sea-surface microlayer. To develop a useful year-round approach to monitoring sea-surface toxicity, larval development of anchovies, kelp bass, and sea urchins was also evaluated as an indication of sea-surface microlayer toxicity.During the spawning season (February and March), urban boys in Puget Sound had lower concentrations of sand sole eggs and neustonic organisms on the sea surface than did the rural bayor Central Sound reference sites. Compared to the reference sites, laboratory exposure to surface microlayer samples collected from urban bay sites generally resulted in more chromsomal aberrations in developing sole embryos, reduced hatching success of sole larvae, and reduced growth in trout cell cultures. In situ hatching success of sole eggs was reduced by half or more in urban bays compared to reference sites.Toxicity was associated with visible surface slicks and, in urban bays, increased with increasing surface pressure (dynes cm−1). Results to be reported separately (Part II) indicate that toxicity is strongly correlated with the presence of high concentrations of polycyclic aromatic hydrocarbons and metals in the sea-surface microlayer. The toxicity of SMIC samples was similar when evaluated by sole, anchovy, kelp bass, or sea urchin tests. A sea-surface monitoring program could use sea urchin embryos to evaluate site-specific sea-surface toxicity throughout the year.  相似文献   
2.
3.
Sea-surface microlayer samples were collected from six nearshore areas receiving different amounts of anthropogenic inputs. The samples were analyzed for selected trace metals, chlorinated hydrocarbons, and polycyclic aromatic hydrocarbons. The relative toxicities of the samples were determined with fish embryo bioassays.Contaminant concentrations generally increased from offshore to the inshore stations. Contaminant concentrations were several orders of magnitude higher in microlayer samples from the highly industrialized Los Angeles and Long Beach harbors compared to samples from a site 15km offshore. Microlayer samples from the inshore stations were significantly more toxic, and induced significantly more developmental abnormalities and chromosome aberrations, than samples from the offshore stations.  相似文献   
4.
Aquatic surface microlayer contamination in chesapeake bay   总被引:1,自引:0,他引:1  
The aquatic surface microlayer (SMIC), 50 μm thick, serves as a concentration point for metal and organic contaminants that have low water solubility or are associated with floatable particles. Also, the eggs and larvae of many fish and shellfish species float on, or come in contact with, the water surface throughout their early development. The objectives of this study were (1) to determine the present degree of aquatic surface microlayer pollution at selected sites in Chesapeake Bay, and (2) to provide a preliminary evaluation of sources contributing to any observed contamination.Twelve stations located in urban bays, major rivers, and the north central bay were sampled three times, each at 5-day intervals during May 1986. Samples of 1.4–4.1 each were collected from the upper 30–60-μm water surface (surface microlayer, SMIC) using a Teflon-coated rotating drum microlayer sampler. One sample of subsurface water was collected in the central bay.At all stations, concentrations of metals, alkanes, and aromatic hydrocarbons in the SMIC were high compared with one bulk-water sample and with typical concentrations in water of Chesapeake Bay and elsewhere. SMIC contamination varied greatly among the three sampling times, but high mean contaminant levels (total polycyclic aromatic hydrocarbons, 1.9–6.2 μg 1−1; Pb, 4.9–24 μg 1−1; Cu, 4–16 μg 1−1; and Zn, 34–59 μg 1−1) were found at the upper Potomac and northern bay sites. Three separate areas were identified on the basis of relative concentrations of different aromatic hydrocarbons in SMIC samples - the northern bay, the Potomac River, and the cleaner southern and eastern portions of the sampling area.Suspected sources of surface contamination include gasoline and diesel fuel combustion, coal combustion, and petroleum product releases. Concentrations of metals and hydrocarbons, at approximately half the stations sampled, are sufficient to pose a threat to the reproductive stages of some fish and shellfish. Sampling and analysis of the surface microlayer provides a sensitive tool for source identification and monitoring of potentially harmful aquatic pollution.  相似文献   
5.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
6.
Hydrological connectivity is a term often used to describe the internal linkages between runoff and sediment generation in upper parts of catchments and the receiving waters. In this paper, we identify two types of connectivity: direct connectivity via new channels or gullies, and diffuse connectivity as surface runoff reaches the stream network via overland flow pathways. Using a forest road network as an example of a landscape element with a high runoff source strength, we demonstrate the spatial distribution of these two types of linkages in a 57 km2 catchment in southeastern Australia. Field surveys and empirical modelling indicate that direct connectivity occurs primarily due to gully development at road culverts, where the average sediment transport distance is 89 m below the road outlet. The majority of road outlets were characterised by dispersive flow pathways where the maximum potential sediment transport distance is measured as the available hillslope length below the road outlet. This length has a mean value of 120 m for this catchment. Reductions in sediment concentration in runoff plumes from both pathways are modelled using an exponential decay function and data derived from large rainfall simulator experiments in the catchment. The concept of the volume to breakthrough is used to model the potential delivery of runoff from dispersive pathways. Of the surveyed road drains (n=218), only 11 are predicted to deliver runoff to a stream and the greatest contributor of runoff occurs at a stream crossing where a road segment discharges directly into the stream. The methodology described here can be used to assess the spatial distribution and likely impact of dispersive and gullied pathways on in-stream water quality.  相似文献   
7.
Black shales of the late Neoproterozoic Gwna Group (570–580 Ma), UK, contain enrichments of tellurium (Te), selenium (Se) and cobalt (Co) relative to average shale compositions. The Te and Co enrichments bear comparison with those of ferromanganese crusts in the modern deep ocean. Gwna Group deposition coincides with the Second Great Oxidation Event, which had a significant effect on trace element fixation globally. Selenium and Te concentrations within these black shales indicate increased continental weathering rates, high biological productivity and corresponding increases in atmospheric O2 concentrations. Cobalt, nickel (Ni) and arsenic (As) enrichments in this succession are secondary mineralisation phases. Demand for many of the trace elements found enriched in the Gwna Group black shales make their mechanisms of accumulation, and variations through the geological record, important to understand, and suggests that new resources may be sought based on black shale protoliths from this period.  相似文献   
8.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   
9.
The Atmospheric Infrared Sounder (AIRS) and MODerate-Resolution Imaging Spectroradiometer (MODIS) on board NASA Earth Observing System (EOS) Aqua spacecraft measure the upwelling infrared radiance used for numerous remote-sensing- and climate-related applications. AIRS provides high spectral resolution infrared radiances, while MODIS provides collocated high spatial resolution radiances at 16 broad infrared bands. An optimal algorithm for cloud-clearing has been developed for AIRS cloudy soundings at the University of Wisconsin-Madison, where the spatially and spectrally collocated AIRS and MODIS data has been used to analyze the characteristic of this algorithm. An analysis and characterization of the global AIRS cloud-cleared radiances using the bias and the standard deviation between the cloud-cleared and the nearby clear measurements are studied. Scene inhomogeneity for both land- and water-surface types has been estimated to account for the assessed error. Both monthly and seasonal changes of global AIRS/MODIS cloud-clearing performance also have been analyzed.  相似文献   
10.
Detailed, chronologically tightly constrained, lake-sediment-based geochemical and pollen records have enabled local changes in soil erosion, woodland cover and composition, and prehistoric farming impact to be reconstructed in considerable detail. The profile opens shortly after 7800 BC when tall canopy trees were well-established and presumably in equilibrium with their environment. A distinct perturbation that involved an increase in pine and birch, a decrease in oak and a minor opening-up of the woodland is regarded as the local expression of the 8.2 ka climate anomaly. Lack of response in the geochemical erosional indicators is interpreted as evidence for drier conditions. A short-lived, over-compensation in climate recovery followed the 8.2 ka event. Neolithic farming impact is clearly expressed in both the pollen and geochemical data. Both datasets indicate that Neolithic impact was concentrated in the early Neolithic (3715–3440 BC). In the interval 3000–2700 BC there appears to have been a break in farming activity. The pollen data suggest substantially increased farming impact (both arable and pastoral) in the Bronze Age, with maximum farming and woodland clearances taking place in the late Bronze Age (1155–935 BC). These developments are poorly expressed in the geochemical record, possibly due to within-lake changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号