首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   18篇
  国内免费   5篇
测绘学   4篇
大气科学   18篇
地球物理   77篇
地质学   95篇
海洋学   20篇
天文学   15篇
综合类   1篇
自然地理   19篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   6篇
  2020年   12篇
  2019年   7篇
  2018年   16篇
  2017年   17篇
  2016年   9篇
  2015年   8篇
  2014年   13篇
  2013年   13篇
  2012年   13篇
  2011年   17篇
  2010年   14篇
  2009年   13篇
  2008年   18篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1991年   4篇
  1983年   1篇
  1980年   2篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
1.
The surface renewal (SR) method was applied for the first time to measurements of air temperature over four Amazonian forest sites and different seasons in order to obtain estimates of buoyancy heat flux. The required calibration of this method against eddy covariance resulted in a value for a specific parameter that is close to the range reported in other studies, contributing to the generalization of the SR method to different kinds of canopies. The comparison with fluxes obtained using the eddy covariance technique revealed a good match between the two methods for different sites, heights and seasons. Sites with high levels of non-stationarity in the signals of temperature and wind speed presented higher scatter in the regression with fluxes from eddy covariance. For a particular site with previously reported influence of low-frequency motions, the regression was only satisfactory, i.e., slope parameter close to unity and small offset, when oscillations with periods longer than $\approx $ 13 min were filtered out. The SR method has a great potential due to the simplicity of the instrumentation required. However, care should be taken when measuring under the influence of mesoscale motions, which can lead to high levels of non-stationarity, compromising the fundamental concepts of the SR theory.  相似文献   
2.
The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.  相似文献   
3.
Mapping marine biocenoses is an efficient method for providing useful data for the management and conservation of Mediterranean lagoons. Fused images from two satellites, SPOT 5 and IKONOS, were tested as management tools for identifying specific ecosystems in the El Bibane lagoon, situated in southern Tunisia near the Libyan border. The objectives of this study were to provide a precise map of the entire El Bibane lagoon using fused images from SPOT 5 and to compare fused images from SPOT 5 and IKONOS over a test-area. After applying a supervised classification, pixels are automatically classified in four classes: low seagrass cover, high seagrass cover, superficial mobile sediments and deep mobile sediments. The maps of the lagoon revealed and confirmed an extremely wide distribution of seagrass meadows within the lagoon (essentially Cymodocea nodosa; 19 546 ha) and a large area of mobile sediments more or less parallel to the shore (3 697 ha). A direct comparison of overall accuracy between SPOT 5 over the entire area, SPOT 5 over the test-area and IKONOS over the test-area revealed that these tools provided accurate mapping of the lagoon environment (83.25%, 85.91% and 73.41% accuracy, respectively). The SPOT 5 images provided greater overall accuracy than the IKONOS image, but did not take into account the heterogeneous spatial structure of the seagrasses and sediments present in the lagoon environment. Although IKONOS imagery provided lower overall accuracy than SPOT 5, it proved a very useful tool for the mapping of heterogeneous structures as it enabled the patchiness of formations to be better taken into account. The use of SPOT 5 and IKONOS fused images appears to be very promising for completing the mapping of lagoons in other regions and countries of the Mediterranean Sea.  相似文献   
4.
The day–night cycle is one of the strongest geophysical cycles modulating species' behavioral rhythms. However, in deep-water continental margins, where light intensity decreases over depth, interspecific competition may alter behavioral responses to day–night cycles. The burrowing decapod crustacean Nephrops norvegicus is a large-size predator in benthic communities, exerting despotic territorial behavior. In this study, we analysed how the effect of light intensity cycles on decapod behavioral rhythms is reduced as one moves from shelves to slopes. In the Western Mediterranean, the predatory behavior and interspecific competition for substrate use of Nephrops increases moving from the shelf (100–110 m) to the slope (400–430 m). Vector fitting and generalized additive models were used to assess the effect of light intensity and behavioral rhythms of N. norvegicus on the temporal variation of prey decapods co-occurring in trawl tow catches carried out on the shelf and the slope during October 1999 and June 2000. The combination of diel variations in light intensity and N. norvegicus abundance influences the activity rhythms of prey decapods in a depth- and seasonal-dependent manner. Light modulation is stronger on the shelf and weaker on the slope, where Nephrops population size is greater. Although present regression analysis does not necessarily imply a direct cause–effect relationship between rhythms of predators and prey, we suggest that Nephrops alters the temporal patterning in the behavior of its prey on the slope, where light intensity is reduced. This alteration is stronger in endobenthic species than in benthopelagic species; the former rely on bottom substrate for the expression of behavioral rhythms, experiencing stronger interspecific competitions with Nephrops at time of activity.  相似文献   
5.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Masonry buildings worldwide exhibited severe damage and collapse in recent strong earthquake events. It is known that their brittle behavior, which is mainly due to the combination of low tensile strength, large mass and insufficient connection between structural elements, is the main limitation for their structural implementation in residential buildings. A new construction system for masonry buildings using concrete blocks units and trussed reinforcement is presented here and its seismic behavior is validated through shaking table tests. Dynamic tests of two geometrically identical two-story reduced scale (1:2) models have been carried out, considering artificial accelerograms compatible with the elastic response spectrum defined by the Eurocode 8. The first model was reinforced with the new proposed system while the second model was built with unreinforced masonry. The experimental analysis encompasses local and global parameters such as cracking patterns, failure mechanisms, and in-plane and out-of-plane behavior in terms of displacements and lateral drifts from where the global dynamic behavior of the two buildings is analyzed comparatively. Finally, behavior factors for the design recommendations in case of unreinforced masonry are also evaluated.  相似文献   
7.
The complexity of most geological and geophysical problems prompts sometimes the use of non linear mathematical methods to handle them. An adaptive neuro fuzzy inference system (ANFIS) that combines fuzzy logic with neural networks, is applied here to study a paleoclimate section from the Quaternary sedimentary fill of the Lake Mucubají (western Venezuela). The purpose of this work is to find a set of numerical relationships that could predict the possible connections between oxygen isotope (δ18O) values from two different locations in the northern hemisphere (Ammersee in southern Germany and an ice core from the Greenland Ice Core Project — GRIP) and rock-magnetic parameters measured in Mucubají samples (i.e. mass-specific magnetic susceptibility — χ, magnetic remanence S-ratio, mass-specific saturation isothermal remanent magnetization — SIRM and anhysteretic remanent magnetization — ARM). The best inferences in terms of coefficient of determionation R2 and the Root Mean-Square Error (RMSE) are obtained using those magnetic data as input that include information about magnetite grain size distributions, e.g., SIRM and ARM in FIS structures [1χ, 4ARM] and [4ARM, 1SIRM]. A comparison between Ammersee and GRIP actual data, as well as their corresponding inferences for the FIS structure [4ARM, 1SIRM], reveals a reasonable good inference of global trends for both records, overlooking the regional and/or local paleoclimate forcings that might have affected Ammersee. A better correlation between global isotope paleoclimate records and magnetic proxies, is perhaps prevented by the role played by local and regional paleoclimate and tectonism in Mucubají. We also argue that the ratio of ARM over SIRM appears to be related in a complex way to the onset and to the end of the Younger Dryas. Our novel approach to the assessment of a specific paleoclimate case study shows the potential of the ANFIS technique in solving problems where traditional univariate and multivariate linear regression methods could prove inadequate.  相似文献   
8.
We use the Proper Orthogonal Decomposition (POD) to investigate the spatiotemporal features of the solar activity. Daily observation in the period 1949–1996 of the green coronal emission line at 530.3 nm are used as indicators of the activity behavior. We show that few POD modes suffice in describing both the space and time main periodicities. In particular, being affected by a strongly energetic stochastic behavior, daily data are described by five POD modes, while two POD modes are enough to describe the butterfly diagram in monthly averaged data. Apart from the basic period T0 = 11 years, using daily data we found evidences for intercycle temporal periodicities.  相似文献   
9.
10.
To investigate the nature of gas hydrates in the Makran area, new high-resolution geophysical data were acquired between 2018–2019. The data collected comprise ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号