首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
测绘学   1篇
地球物理   8篇
地质学   3篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   
3.
4.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   
5.
6.
7.
8.
Ground-water models: validate or invalidate   总被引:1,自引:0,他引:1  
  相似文献   
9.
The secret to successful solute-transport modeling   总被引:6,自引:0,他引:6  
Konikow LF 《Ground water》2011,49(2):144-159
  相似文献   
10.
The TW Hydrae system is perhaps the closest analog to the early solar nebula. We have used the Very Large Array to image TW Hya at wavelengths of 7 mm and 3.6 cm with resolutions of 0&farcs;1 ( approximately 5 AU) and 1&farcs;0 ( approximately 50 AU), respectively. The 7 mm emission is extended and appears dominated by a dusty disk of radius greater than 50 AU surrounding the star. The 3.6 cm emission is unresolved and likely arises from an ionized wind or gyrosynchrotron activity. The dust spectrum and spatially resolved 7 mm images of the TW Hya disk are fitted by a simple model with temperature and surface density described by radial power laws, T&parl0;r&parr0;~r-0.5 and Sigma&parl0;r&parr0;~r-1. These properties are consistent with an irradiated gaseous accretion disk of mass approximately 0.03 M middle dot in circle with an accretion rate approximately 10-8 M middle dot in circle yr-1 and viscosity parameter alpha=0.01. The estimates of mass and mass accretion rates are uncertain since the gas-to-dust ratio in the TW Hya disk may have evolved from the standard interstellar value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号