首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2019年   1篇
  2018年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
The Northern Indian Ocean (NIO) is unique due to seasonal reversal of wind patterns, the formation of vortices and eddies which make satellite observations arduous. The veracity of sea surface wind (SSW) and sea surface temperature (SST) products of sun-synchronous AMSR-2 satellite are compared with high-temporal moored buoy observations over the NIO. The two year-long (2013–2014) comparisons reveal that the root-mean-square-error (RMSE) of AMSR-2 SST and SSW is \(<0.4{^{\circ }}\hbox {C}\) and \(<1.5\hbox { ms}^{-1}\), respectively, which are within the error range prescribed for the AMSR-2 satellite (\(\pm 0.8{^{\circ }}\hbox {C}\), \(\pm 1.5\hbox { ms}^{-1})\). The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low-SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the AMSR-2 displayed larger slope for SST–wind relation and could be mainly due to overestimation of SST and underestimation of wind as compared to the buoy. The AMSR-2 SSW exhibited higher error during post-monsoon followed by monsoon season and could be attributed to the high wind conditions associated with intense oceanic vortices. The study suggests that the AMSR-2 products are reliable and can be used in tropical air–sea interactions, meso-scale features, and weather and climate studies.  相似文献   
2.
This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range. SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs. The magnitude of diurnal range of SST was highest in spring and lowest in summer monsoon. Except in spring, nearly 75–80% of the observations reported diurnal range below 0.5°C. The distributions of the magnitudes of diurnal warming across the three basins of north Indian Ocean (Arabian Sea, Bay of Bengal and Equatorial Indian Ocean) were similar except for the differences between the Arabian Sea and the other two basins during November–February (winter monsoon) and May. The magnitude of diurnal warming that depended on the location of temperature sensor below the water level varied with seasons. In spring, the magnitude of diurnal warming diminished drastically with the increase in the depth of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the diurnal range of SST at ∼1.0 m in the north Indian Ocean during most of the seasons except under low wind-high solar radiation conditions that occur mostly during spring. The additional information on the rate of precipitation is found to be redundant for the estimation of the magnitude of diurnal warming at those depths.  相似文献   
3.
Naseef  T. Muhammed  Kumar  V. Sanil  Joseph  Jossia  Jena  B. K. 《Natural Hazards》2019,97(3):1231-1251
Natural Hazards - Information about waves with specific return period in a region is essential for the safe design of marine facilities. In this study, significant wave height for 50-year return...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号