首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
地质学   2篇
  1998年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Bleaching characteristics of Late Glacial and Holocene eolian sands from The Netherlands confirm the suitability for TL dating of these sediments. A solar simulator has been used for both quartz and potassium feldspar separates. A number of bleaching times and dose rate determinations have been used to establish the best plateau for the ED determination and a suitable dose rate respectively, in order to date a Late Glacial cover sand sample.  相似文献   
2.
The geomorphology, lithology and chronostratigraphy of extensive, late Pleistocene inland and river dune sands, aeolian sand sheets (‘cover sands’) and loess deposits of periglacial origin in northwestern Europe are well known. However, the idea that some of these aeolian sediments result from niveo-aeolian processes is still an open question, as no diagnostic sedimentary features have yet been reported. Moreover, actual niveo-aeolian sediments and related denivation forms, reported from various cold-climate regions, are not suitable analogues. Recent observations in active dune fields in northwestern Alaska indicate that interstratification of wind-driven snow and sand preferentially occurs on slip faces of transverse, barchanoid or parabolic dune ridges. Annual denivation forms develop: e.g. snow ramparts, sinkholes, snow hummocks, snow meltwater fans and tensional cracks. The surface consists of a cracked wet sand layer with a dimpled surface and spongy structure. Although the preservation potential of these features is low in this specific case, similar features may be observed in ancient sediments elsewhere and provide useful palaeoclimatic indicators. The niveo-aeolian concept should therefore not specifically be related to late Pleistocene cover sand deposition in northwestern Europe, as previously assumed.  相似文献   
3.
Abstract: Five groups of the Phanerozoic granitoids in South Korea can be deduced from their temporal and spatial distributions: (1) Jurassic granitoids in the Gyeonggi massif, (2) Permo-Jurassic granitoids in the Ogcheon belt, (3) Permo-Jurassic granitoids in the Yeongnam massif, (4) Cretaceous granitoids in the Ogcheon belt, and (5) Cretaceous granitoids in the Gyeongsang basin. Though the granitoids of each group generally show calc-alkaline and orogenic natures, the petrological, geochemical and genetical features are different with each other. The Permo-Jurassic granitoids in the Ogcheon belt have lower contents of Al2O3, Fe2O3, CaO, P2O5, but higher of FeO, FeOT, MgO, K2O than those in the Yeongnam massif. From higher feature of K2O, Na2O+K2O and K2O/Na2O, the Ogcheon belt seems to have been located at closer continent side relative to the Yeongnam massif during Permo-Jurassic time. From lower values of Fe2O3/FeO and magnetic susceptibility the granitoids of the Ogcheon belt had been solidified under more reducing environment than those of the Yeongnam massif. The Cretaceous granitoids in the Ogcheon belt have lower contents of TiO2, Fe2O3, FeO, FeOT, CaO and P2O5, but higher of MgO, K2O, Na2O+K2O and K2O/Na2O than those in the Gyeongsang basin. This feature indicates that the Ogcheon belt would correspond to the continental environment of magma genesis during Cretaceous time. Higher values of Fe2O3/FeO and magnetic susceptibility in the Cretaceous granitoids in the Gyeongsang basin suggest that the granitoids had been solidified under highly oxidizing environment. From the particular chemical features of K2O, Na2O+K2O and K2O/Na2O, the Permo-Jurassic granitoids in the Ogcheon belt, the Yeongnam massif as well as the Cretaceous ones in the Gyeongsang basin can be categorized to the continental margin type granite. The Jurassic granitoids in the Gyeonggi massif are possibly of collision type, and the Cretaceous granitoids in the Ogcheon belt of post–orogenic, intra–conti–nent type. The Jurassic granitoids in the Gyeonggi massif had been possibly generated by crustal melting during the collision of Gyeonggi massif to the northern Pyeongnam basin block. The Cretaceous granitoids in the Ogcheon belt had been emplaced at the hinterland of the continental margin during post-orogenic stage of the Honam Shear Zone. The Cretaceous granitoids in the Gyeongsang basin are often compared with Japanese Cretaceous?Paleogene granitoids in their geochemical and genetical natures. For the granitoid composition, the granitoids in the Gyeongsang basin are higher in Fe2O3, Fe2O3/FeO, Na2O, K2O, Na2O+K2O and K2O/Na2O, but lower in Al2O3, FeO, MnO, CaO and P2O5 than the Japanese granitoids. The contents of TiO2, FeOT and MgO are similar in both granitoids. This geochemical contrast would imply that the Cretaceous granitoid magmas in the Gyeongsang basin had been originated at closer place to the continent side under more tensional field, and solidified under more oxidizing environment than the coeval Japanese granitoid magmas.  相似文献   
4.
The concept of a ‘niveo-aeolian influence’ on the genesis of northwest European Pleistocene aeolian sand and loess deposits has been advocated in the past both to explain the presence and the absence of lamination. Field experiments were carried out on artificially deposited alternating layers of sand and snow, and of loess and snow, to investigate the role of a niveo-aeolian mode of deposition on resulting sedimentary structures. Field observations of sand plots revealed minor changes in surface morphology typical of denivation surfaces. The thin sections showed a characteristic porous structure. Deformations of the depositional structure and indications for erosion and redeposition were limited. However, the originally smooth aeolian sedimentary surface of the loess changed considerably. The thin sections showed also a porous, spongy structure. Indications were found for disturbances by frost action, liquefaction during melting of the snow and ice, and redeposition of loess by meltwater. The experimental results strongly suggest that sand and loess deposited as niveo-aeolian material are characterized both by a porous structure, and that the original sedimentary structure of the sand is not affected by snowmelt, whereas loess becomes non-laminated. Thus, the intercalation of snow during sedimentation of sand and loess does not in itself induce a laminated structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号