首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   5篇
  国内免费   7篇
测绘学   1篇
大气科学   4篇
地球物理   1篇
地质学   68篇
海洋学   3篇
天文学   21篇
自然地理   3篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
The stratiform Cu–Co ore mineralisation in the Katangan Copperbelt consists of dispersed sulphides and sulphides in nodules and lenses, which are often pseudomorphs after evaporites. Two types of pseudomorphs can be distinguished in the nodules and lenses. In type 1 examples, dolomite precipitated first and was subsequently replaced by Cu–Co sulphides and authigenic quartz, whereas in type 2 examples, authigenic quartz and Cu–Co sulphides precipitated prior to dolomite and are coarse-grained. The sulphur isotopic composition of the copper–cobalt sulphides in the type 1 pseudomorphs is between −10.3 and 3.1‰ relative to the Vienna Canyon Diablo Troilite, indicating that the sulphide component was derived from bacterial sulphate reduction (BSR). The generation of during this process caused the precipitation and replacement of anhydrite by dolomite. A second product of BSR is the generation of H2S, resulting in the precipitation of Cu–Co sulphides from the mineralising fluids. Initial sulphide precipitation occurred along the rim of the pseudomorphs and continued towards the core. Precipitation of authigenic quartz was most likely induced by a pH decrease during sulphide precipitation. Fluid inclusion data from quartz indicate the presence of a high-salinity (8–18 eq. wt.% NaCl) fluid, possibly derived from evaporated seawater which migrated through the deep subsurface. 87Sr/86Sr ratios of dolomite in type 1 nodules range between 0.71012 and 0.73576, significantly more radiogenic than the strontium isotopic composition of Neoproterozoic marine carbonates (87Sr/86Sr = 0.7056–0.7087). This suggests intense interaction with siliciclastic sedimentary rocks and/or the granitic basement. The low carbon isotopic composition of the dolomite in the pseudomorphs (−7.02 and −9.93‰ relative to the Vienna Pee Dee Belemnite, V-PDB) compared to the host rock dolomite (−4.90 and +1.31‰ V-PDB) resulted from the oxidation of organic matter during BSR.  相似文献   
2.
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit. Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain  相似文献   
3.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   
4.
Basement fault reactivation is now recognized as an important control on sedimentation and fault propagation in intracratonic basins. In southern Ontario, the basement consists of complexly structured mid-Proterozoic (ca. 1.2 Ga) crystalline rocks and metasedimentary rocks that are overlain by up to 1500 m of Paleozoic sedimentary strata. Reactivation of basement structures is suspected to control the location of Paleozoic fault and fracture systems, but evaluation has been hindered by a limited understanding of the regional structural characteristics of the buried basement. New aeromagnetic- and gravimetric-lineament mapping presented in this paper better resolves the location of basement discontinuities and provides further evidence for basement controls on the distribution of Paleozoic fault and fracture systems. Lineament mapping was facilitated by reprocessing and digital image enhancement (micro-levelling, regional residual separation, derivative filtering) of existing regional gravity and aeromagnetic datasets. Reprocessed images identify new details of the structural fabric of the basement below southern Ontario and delineate several previously unrecognized aeromagnetic and gravity lineaments and linear zones. Linear zones parallel the projected trends of mid-Proterozoic terrane boundaries identified by field mapping on the exposed shield to the north of the study area, and are interpreted as zones of shearing and basement faulting. Mapped aeromagnetic and gravity lineaments show similar trends to Paleozoic faults and fracture networks and broad zones of seismicity in southern Ontario. These new data support an ‘inheritance model’ for Paleozoic faulting, involving repeated reactivation and upward propagation of basement faults and fractures into overlying cover strata.  相似文献   
5.
Black shales of the late Neoproterozoic Gwna Group (570–580 Ma), UK, contain enrichments of tellurium (Te), selenium (Se) and cobalt (Co) relative to average shale compositions. The Te and Co enrichments bear comparison with those of ferromanganese crusts in the modern deep ocean. Gwna Group deposition coincides with the Second Great Oxidation Event, which had a significant effect on trace element fixation globally. Selenium and Te concentrations within these black shales indicate increased continental weathering rates, high biological productivity and corresponding increases in atmospheric O2 concentrations. Cobalt, nickel (Ni) and arsenic (As) enrichments in this succession are secondary mineralisation phases. Demand for many of the trace elements found enriched in the Gwna Group black shales make their mechanisms of accumulation, and variations through the geological record, important to understand, and suggests that new resources may be sought based on black shale protoliths from this period.  相似文献   
6.
We present Hubble Space Telescope ( HST ) images of seven low-redshift quasars (six taken with the Planetary Camera, one with the Wide Field Camera). These complete the sample of 14 quasars observed by the Faint Object Camera Investigation Definition Team (FOC IDT). Following subtraction of the quasar nuclear light, host galaxies can be seen in all seven cases. A combination of the optical morphology and luminosity profiles of the residual host galaxies and the results of 2D cross-correlation model fitting implies that five of the objects have elliptical host galaxies and two have disc host galaxies. The luminosities vary from slightly fainter than L * to about 1.3 mag brighter than L *.   We discuss the properties of the complete sample of 14 quasars. Nine of the objects appear to have elliptical host galaxies (all six of the radio-loud quasars in the sample as well as three radio-quiet quasars). Two further radio-quiet quasars appear to lie in disc galaxies. The other three objects (radio-quiet, ultraluminous infrared quasars) all lie in violently interacting systems. The sample as a whole has an average luminosity about 0.8 mag brighter than L *, although the radio-loud objects have hosts on average 0.7 mag brighter than the radio-quiet objects.   We compare our results with those from HST imaging of quasars by other authors. Taken together, our observations are in broad agreement with those of Bahcall et al. Radio-loud quasars appear to lie in luminous elliptical galaxies whereas radio-quiet quasars are found to lie in either elliptical or spiral hosts. Host galaxy luminosities (of radio-quiet and radio-loud quasars) are much brighter than would be expected if they followed a Schechter luminosity function.  相似文献   
7.
铜陵矿集区是我国长江中下游Cu-Au-Fe-Mo成矿带中最重要的有色金属基地之一,凤凰山矿床是铜陵矿集区的重要组成部分,为一个典型的夕卡岩型铜矿床。本文利用Re-Os同位素定年方法对凤凰山铜矿床进行了成矿时代测定,获得了辉钼矿的Re-Os同位素模式年龄范围为139.1±2.4~142.0±2.2Ma,等时线年龄为141.1±1.4Ma,与矿区内石英二长闪长岩和花岗闪长岩SHRIMP锆石U-Pb年龄(144.2±2.3Ma)相吻合,也与铜陵地区其他矿田的成矿时代基本一致,可能为岩石圈减薄事件的成矿响应。  相似文献   
8.
There is little consensus on whether carbonate-hosted base metal deposits, such as the world-class Irish Zn + Pb ore field, formed in collisional or extensional tectonic settings. Helium isotopes have been analysed in ore fluids trapped in sulphides samples from the major base metal deposits of the Irish Zn-Pb ore field in order to quantify the involvement of mantle-derived volatiles that require melting to be realised, as well as test prevailing models for the genesis of the ore fields. 3He/4He ratios range up to 0.2 R a, indicating that a small but clear mantle helium contribution is present in the mineralising fluids trapped in galena and marcasite. Sulphides from ore deposits with the highest fluid inclusion temperatures (~200 °C) also have the highest 3He/4He (>0.15 R a). Similar 3He/4He are recorded in fluids from modern continental regions that are undergoing active extension. By analogy, we consider that the hydrothermal fluids responsible for the carbonate-hosted Irish base metal mineralization circulated in thinned continental crust undergoing extension and demonstrate that enhanced mantle heat flow is ultimately responsible for driving fluid convection.  相似文献   
9.
Abstract

Large enough to include many oceanic phenomena, the Laurentian Great Lakes are more accurately described as inland seas. With the exception of the shallow Western Basin of Lake Erie, the lakes are thermally stratified in summer, homogeneous in winter, with average temperatures passing through the temperature of maximum density of fresh water (4°C) in both the spring and the fall. The circulation is mainly powered by the wind but is strongly modified by thermal stratification and basin geometry. Effects of the earth's rotation are present in all large‐scale flows. Current speeds are typically 10 cm s?1; they are too small, with rare exceptions, to present difficulties to navigation but a knowledge of the patterns of water movement is essential for interpreting the behaviour of these valuable lakes as complex ecosystems. This paper will review more than a century of physical study of the Great Lakes.  相似文献   
10.
Apatite phenocrysts from the 1963 and 1723 eruptions of Irazú volcano (Costa Rica) record a volatile evolution history that confirms previous melt inclusion studies, and provides additional information concerning the relative and absolute timing of subvolcanic magmatic events. Measurements of H, Cl, and F by secondary ion mass spectrometry reveal multiple populations of apatite in both 1723 and 1963 magmas. Assuming nominal apatite/melt partition coefficients allows us to compare the pattern of melt inclusions and apatites in ternary space, demonstrating the fidelity of the record preserved in apatite, and revealing a complex history of magma mixing with at least two components. The preservation of heterogeneous populations of apatite and of internally heterogeneous crystals requires short timescales (days to years) for these magmatic processes to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号