首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球物理   2篇
地质学   12篇
天文学   7篇
  2013年   2篇
  2012年   1篇
  2010年   5篇
  2009年   5篇
  1994年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
This paper provides a comprehensive analysis of the dynamics of the flow of minor ion species in the solar wind under the combined influences of gravity, Coulomb friction (with protons), rotational forces (arising from the Sun's rotation and the interplanetary spiral magnetic field) and wave forces (induced in the minor ion flow by Alfvén waves propagating in the solar wind). It is assumed that the solar wind can be considered as a proton-electron plasma which is, to a first approximation, unaffected by the presence of minor ions. In the dense hot region near the Sun Coulomb friction accelerates minor ions outwards against the gravitational force, part of which is cancelled by the charge-separation electric field. Once the initial acceleration has been achieved, wave and rotational forces assist Coulomb friction in further increasing the minor ion speed so that it becomes comparable with, or perhaps even exceeds, the solar wind speed. A characteristic feature of the non-resonant wave force is that it tends to bring the minor ion flow into an equilibrium where the radial speed matches the Alfvén speed relative to the solar wind speed, whereas Coulomb friction and rotational forces tend to bring the flow into an equilibrium where the radial speed of the minor ions equals the solar wind speed. Therefore, provided that there is sufficient wave energy and Coulomb friction is weak, the minor ion speed can be trapped between these two speeds. This inteststing result is in qualitative agreement with observational findings to the effect that the differential flow speed between helium ions and protons is controlled by the ratio of the solar wind expansion time to the ion-proton collision time. If the thermal speeds of the protons and minor ions are small compared to the Alfvén speed, two stable equilibrium speeds can exist because the rapid decrease in the Coulomb cross-section with increasing differential flow speed allows the non-resonant wave force to balance Coulomb friction at more than one ion speed. However, it must be emphasized that resonant wave acceleration and/or strong ion partial pressure gradients are required to achieve radial speeds of minor ions in excess of the proton speed, since, as is shown in Section 4, the non-resonant wave acceleration on protons and minor ions are identical when their radial speeds are the same, with the result that, in the solar wind, non-resonant wave acceleration tends (asymptotically) to equalize minor ion and proton speeds.  相似文献   
2.
回顾分析Matilda医院超速CT室筛选首批病人中99例中国人资料,很明显从通常采用130-100Hounsfield单位作为检出冠状血管钙化的基数应用至中国人身上其阈值数目需要降低,同时,我们也发现如果病人年龄按每10年范围分组(21-30,30-40,41-50,51-60)而计算其超速CT的钙化指数会较随机男女一起按平均计算更易区分其差异.进一步分析显示,男性中年时候超速CT指数已达最高值,而女性则晚10年方达最高值,因此,为了更易探测冠脉循环内钙化倾向应作出超速CT检出钙化的指数数目.这些实践经验对动脉粥样硬化过程的预测或预防有实际意义.  相似文献   
3.
From a comparison of the 2:1 and 3:2 resonances (in the asteroidal belt) two possible explanations to the absence of 3:2 apocentric librators are suggested. The first one is that such 3:2 resonant motion is dynamically unstable. The second interpretation requires the absence of nearcircular orbits originally at 4 AU. The latter view, if correct, is inconsistent with cosmogonic models which predict the original orbits of the asteroids to be nearly circular.  相似文献   
4.
The precision dating (U-Pb local by zircons, SHRIMP-II) of volcanic rocks in the unique uranium-bearing structure of Transbaikalia is performed for the first time. The basic conclusions are as follows. The volcanic activity in the Tulukuev caldera covers the period of not less than 30–35 mln years, within the period from (not later than) 162 to 128 mln years. Two stages of caldera evolution are established: the early (trachydacite-basalt) stage up to 154 mln years and the late (trachybasalt-rhyolite) stage from 142 to 128 mln years, with a 10 mln year break, which caused the deep erosion of the lower layer. Three phases of rhyolite magmatism are substantiated. The first one, 142 mln years, is the ejection of ignimbrites (microfelsitic rhyolites); the second one, 137–135 mln years, is the outflow of lavas of sanidine-morion rhyolites and subvolcanic and ring dyke intrusions. The third phase, 128 mln years, is connected with the occurrence of cesium-bearing perlites in the southwestern part of the caldera. The age of the granite-porphyries of the Krasnokamensk stock almost coincides with the precision data of the age of the uranium ores [4]. It is found that zircons from the granite-porphyries within the ore field of the Argunsk deposit have an anomalously high content of uranium. This fact can additionally testify to the time-and-spatial closeness of magmatism and processes of ore formation.  相似文献   
5.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   
6.
7.
U–Pb (SHRIMP) determinations on detrital zircons from the Early Paleozoic Gelnica Terrane metasandstones and their Permian overlap sediments of the Inner Western Carpathian Southern Gemeric Unit define five age populations based on age-probability plots. The metasandstones were sampled for detrital zircons from six stratigraphic levels, four of them in the Late Cambrian/Ordovician Gelnica Terrane metasandstones and the two in Permian envelope sequence. The data set includes 84 U–Pb ages for individual detrital zircons. These ages are combined with the previously dated inherited zircons from the associated metavolcanites (n?=?31). The majority of the pre-Permian detrital and inherited zircons (95%) belong to the three main populations: population A—the Paleoproterozoic/Neoarchean ages ranging from 1.75 to 2.6?Ga; population B—the Mesoproterozoic ages with the range of 0.9 to 1.1?Ga; population C—the Neoproterozoic ages, ranging from 560 to 807?Ma. The detrital zircon age spectrum from the basal Permian sediments reflects the strong recycling from the underlying Gelnica Terrane, with the presence of the dominant Precambrian C and B populations (94% of total), including the minor populations A. The range of the detrital zircon ages from the Late Permian sandstones is wider, with additional population D, ranging from 497 to 450?Ma and population E with a time span from 369 to 301?Ma. Within the Late Permian detrital zircon assemblage, the Proterozoic population A?+?B?+?C form only 25% of total. The detrital zircon data suggest that the Gelnica Terrane belongs to the peri-Gondwanan terrane with a source area located on the northwestern margin of Gondwana close to Amazonia. This terrane should have travelled a long distance in the Phanerozoic times.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号