首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67590篇
  免费   12021篇
  国内免费   17072篇
测绘学   6420篇
大气科学   11632篇
地球物理   14979篇
地质学   36379篇
海洋学   9118篇
天文学   3487篇
综合类   6366篇
自然地理   8302篇
  2024年   327篇
  2023年   1092篇
  2022年   3110篇
  2021年   3730篇
  2020年   3132篇
  2019年   3643篇
  2018年   4066篇
  2017年   3754篇
  2016年   4020篇
  2015年   3587篇
  2014年   4212篇
  2013年   4601篇
  2012年   4608篇
  2011年   4777篇
  2010年   4551篇
  2009年   4302篇
  2008年   4025篇
  2007年   3927篇
  2006年   3426篇
  2005年   2813篇
  2004年   2133篇
  2003年   2028篇
  2002年   2281篇
  2001年   2053篇
  2000年   1899篇
  1999年   2146篇
  1998年   1616篇
  1997年   1699篇
  1996年   1473篇
  1995年   1339篇
  1994年   1180篇
  1993年   981篇
  1992年   805篇
  1991年   581篇
  1990年   486篇
  1989年   409篇
  1988年   353篇
  1987年   266篇
  1986年   214篇
  1985年   157篇
  1984年   114篇
  1983年   109篇
  1982年   101篇
  1981年   82篇
  1980年   81篇
  1979年   85篇
  1978年   37篇
  1976年   32篇
  1975年   36篇
  1958年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
3.
The geodynamic mechanism of the late Early Cretaceous magmatic flare‐up in the collisional zone between the Lhasa and Qiangtang terranes in Tibet is controversial because of a scarcity of robust evidence. To address this problem, we report geochronological, geochemical and Hf isotopic data for the newly discovered Gufeng gabbros from the Duolong Cu–Au mineral district of the western Bangong–Nujiang Suture Zone (BNSZ). The gabbro samples, dated at 126.3 ± 1.8 Ma, show geochemical similarities to typical ocean island basalt (OIB) and have positive εHf(t) values of +3.3 to +6.9. The gabbros were generated by decompression melting of deep upwelling asthenosphere. This event is best explained by slab break‐off and the resultant development of a slab window beneath central Tibet.  相似文献   
4.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
5.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
6.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
7.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
8.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   
9.
俞志尧 《天文学进展》2002,20(3):256-264
自从在活动星系核NGC4945的视线方向上发现第一个河外H2O超脉泽源以来,迄今为止已发现了19个河外H2O超脉泽源,对与活动星系核成协和河外H2O超脉泽源及分子谱线的观测和研究是探测和研究活动星系核核区中央源,拱核气体和尘埃环性质的非常有效的工具,主要评述对河外H2O超脉泽源及与其相关分子谱线的搜索,观测和理论研究现状。  相似文献   
10.
Manzhouli is the largest land port city on the Sino-Russia border, transit cargo through the land port amount-ed to 5.95 million tons, transit tourists were 304 500 in 2000. It stands at the joint place of China, Mongolia and Russi-a, faces to Siberia area of Russia, receives direct support from the Northeast China and Bohai Sea Rim Area, and possess-es priorities in geographical location, land port infrastructure, water resources, coal resources, tourist resources andgreat potentiality in economic cooperation with Russia. The future urban function is a key port on the First Eurasia Continen-tal Bridge. Manzhouli Port will keep its first place between China and Russia land transport, and it is forecasted that thetransit amount through Manzhouli Port will go up to 10 million tons in 2005 and 20 million tons in 2010. It will be construct-ed to be a trade center of the peripheral area extending to Russia and Mongolia, a key export-oriented processing industri-al zone supported by industries such as export processing industries, export agriculture, trade services, technology trad-ing and the other service industries. It keeps being a well-known touring city for trade, shopping, sightseeing, vocation,local food, recreation and cultural events. To build Manzhouli Export Processing Industry Zone will improve city econom-ic structure, and the main sectors are organic food processing, livestock products processing, garment and furniture indus-try. Moreover, Manzhouli Export Processing Industry Zone will eventually be upgraded to be a border free trade zone.The city functional transition will inevitably affect urban spatial restructure and its expansion. The city space transforma-tion will develop as such: one development axis of No. 301 highway paralleling with Bin - Zhou(Harbin - Manzhouli) rail-way which cuts through central part of Manzhouli City, and links Zhalainuocr District with central city; three urban unitsincluding central city, Zhalainuocr District and Manzhouli Interchange Trade Zone; cohesion with Aoerjin and Cuogangpastures; regional dual-nuclei structure of Hailaer City and Manhzouli City; and the Manzhouli-Zabaykalsk Free TradeZone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号