首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   1篇
地质学   4篇
海洋学   1篇
天文学   8篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1998年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
3.
4.
The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river:
(1)
A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to-3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow.
(2)
A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows.
(3)
A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl∼0.2-0.5; Br/Cl∼2-3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4-10‰), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl∼6-8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4-10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.
  相似文献   
5.
6.
7.
The mechanical properties of cohesionless granular materials are evaluated from grain‐scale simulations. A three‐dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path‐dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress‐induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
8.
We observed Phoebe for 13 nights over a period of 55 days before, during, and after the 2005 Saturn opposition with the New Mexico State University (NMSU) 1-m telescope at Apache Point Observatory (APO) in Sunspot, NM and characterized the width and magnitude of Phoebe’s opposition surge in BVRI filters. Our observations cover a phase angle range of 4.87° to 0.0509°. We use a Hapke reflectance model incorporating shadow hiding and coherent backscatter to investigate the wavelength dependence of Phoebe’s opposition surge. We find a significant opposition surge magnitude of 55-58% between phase angles of 5° and 0°. We find the strongest opposition surge for phase angles less than 2° in the I-band. The coherent backscatter angular width is on the order of 0.50°. We find Phoebe’s albedo to be spectrally flat within our error limits, with a B-band albedo of 0.0855 ± 0.0031, a V-band albedo of 0.0856 ± 0.0023, an R-band albedo of 0.0843 ± 0.0020, and an I-band albedo of 0.0839 ± 0.0023. We compare Phoebe’s albedo, color, and opposition surge magnitudes and slopes with those of other outer solar system bodies and find similarities to Centaurs, Nereid, Puck, and Comets 19P/Borrelly, 9P/Tempel 1, and 81P/Wild 2. We find that this comparison supports the idea that Phoebe originated in the Kuiper Belt. We also discuss the caveats of using results from a Hapke reflectance model to derive specific surface particle properties.  相似文献   
9.
We analyze an extended redshift sample of Abell/ACO clusters and compare the results with those coming from numerical simulations of the cluster distribution, based on the truncated Zel'dovich approximation (TZA), for a list of eleven dark matter (DM) models. For each model we run several realizations, so that we generate a set of 48 independent mock Abell/ACO cluster samples per model, on which we estimate cosmic variance effects. Other than the standard CDM model, we consider (a) Ω0 = 1 CDM models based on lowering the Hubble parameter and/or on tilting the primordial spectrum; (b) Ω0 = 1 Cold + Hot DM models with 0.1 ≤Ων ≤0.5; (c) low-density flat ΛCDM models with 0.3 ≤Ω0 ≤0.5. We compare real and simulated cluster distributions by analysing correlation statistics, the probability density function, and supercluster properties from percolation analysis. We introduce a generalized definition of the spectrum shape parameter Γ in terms of σ25/σ8, where σris the rms fluctuation amplitude within a sphere of radius r. As a general result, we find that the distribution of galaxy clusters provides a constraint only on the shape of the power spectrum, but not on its amplitude: a shape parameter 0.18 Γ 0.25 and an effective spectral index at the 20 h−1 Mpc scale −1.1 neff −0.9 are required by the Abell/ACO data. In order to obtain complementary constraints on the spectrum amplitude, we consider the cluster abundance as estimated using the Press-Schechter approach, whose reliability is explicitly tested against N-body simulations. By combining results from the analysis of the distribution and the abundance of clusters we conclude that, of the cosmological models considered here, the only viable models are either Cold + Hot DM ones with 0.2 Ων 0.3, better if shared between two massive ν species, and ΛCDM ones with 0.3 Ω00.5.  相似文献   
10.
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components’ inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号