首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
地球物理   1篇
地质学   8篇
海洋学   1篇
天文学   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
2.
Despite refinement in scientific methods of setting total allowable catches (TACs), the choice of values is affected by uncertainty that arises as a result of incomplete information and the behavioural intentions of resource users, among others. In this context, this paper promotes ‘anchoring’ – which is a subject of behavioural economics and is generally practised in decision-making when faced with uncertainty – as an approach to TAC setting. We estimate a set of anchor points for nine demersal species by employing two modelling scenarios, the first using catch-and-effort data and the second only catch data collected from the demersal trawl fishery. A non-parametric test yielded no significant difference between the sets of anchor points generated from the two models. It is hoped that the use of anchoring would constitute a proactive management approach that could serve as a mechanism of promoting knowledge integration and effective communication, developing mutual trust, and improving management outcomes in the future.  相似文献   
3.
豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究   总被引:6,自引:1,他引:5  
豫西沙沟薄脉状Ag-Pb-Zn硫化物矿床位于华北陆块南缘熊耳山地区,主要由多金属硫化物-石英-碳酸盐脉型和石英-碳酸盐-绢云母-多金属硫化物蚀变岩型两种矿化类型组成。主要矿脉的矿物共生序列可以分为成矿前的石英-黄铁矿阶段(Ⅰ)、闪锌矿-石英-方铅矿-少量银矿物阶段(Ⅱ1)、方铅矿-石英-闪锌矿-含铁白云石-银矿物阶段(Ⅱ2)和成矿后的方解石-(石英)阶段(Ⅲ)。对不同阶段的成矿流体研究表明,石英-黄铁矿阶段(Ⅰ)中的含氯化钠子晶三相(LVH)包裹体(Ⅰ1)可能是直接从饱和水的结晶岩浆熔体中出溶形成或是由岩浆流体的减压沸腾形成,显示该区很可能存在岩浆流体端元。多金属硫化物阶段(Ⅱ1Ⅱ2)捕获富液相包裹体(LV型)和个别CO2包裹体(C型),这两个阶段流体包裹体反映了主成矿阶段流体的基本特征,结合包裹体气相和液相成分色谱分析以及包裹体初融温度,认为成矿流体应该为中-低温低盐度含CO2的H2O-NaCl体系。其中,阶段(Ⅱ2)的均一温度(145~288℃,平均为194℃)比阶段(Ⅱ1)的均一温度(185~357℃,平均240℃)低46℃;同时,阶段(Ⅱ2)的盐度(1.91%~10.86%,平均6.38%)较阶段(Ⅱ1)盐度(4.65%~10.11%,平均7.77%)略低。对这一温度和盐度的总体下降趋势的合理解释是大气水的逐渐混入。多金属硫化物阶段(Ⅱ1Ⅱ2)之后的方解石-(石英)阶段普遍为富液相包裹体(LV型),该阶段显著降低的温度(129~208℃,平均165℃)和盐度(1.40%~4.03%,平均2.50%),进一步佐证大气水的不断混入。而且,流体混合可能在引起矿石矿物从热液中沉淀方面起到重要作用。  相似文献   
4.
Landslides are one of the most widespread natural hazards in high mountain terrains such as the Himalayas, which are one of the youngest tectonically and seismically active mountain ranges in the world. The crustal movements along the longitudinal thrusts and transverse faults give rise to earthquakes and in turn initiate landslides in the region. In fact, in addition to various static factors causing landslides, earthquakes are one of the major causes of landslides. It is thus imperative to incorporate seismic factor also while carrying out landslide susceptibility zonation map preparation in a seismically active areas like Garhwal Himalayas. In this paper, a study on the effect of earthquakes on landslide susceptibility zonation has been demonstrated by taking Chamoli earthquake as an example.  相似文献   
5.
The present study investigated the synergistic effect of co-digesting food and green waste from institute campus for enhanced biogas production in different ratios in batch tests (37 ± 1 °C, 90 rpm, 45 days). The results showed that blending improved the biogas production significantly, with highest biogas yield (660 ± 24 mL g?1 volatile solids) that was achieved at 75:25 of food and green waste ratio on volatile solids basis. The yield was 1.7- and 1.9-fold higher than the mono-digestion of food and green waste (370 ± 34; 342 ± 36 mL g?1 volatile solids), respectively. The increase in biogas production may be attributed to optimum carbon to nitrogen ratio resulting in higher yield. The addition of TiO2 nanoparticles showed virtually no effect on biogas production. Characterization was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for kinetic study of biogas production where modified Gompertz model showed goodness of fit (R 2 = 0.9978) with the experimental results.  相似文献   
6.
Garhwal Himalayas are seismically very active and simultaneously suffering from landslide hazards. Landslides are one of the most frequent natural hazards in Himalayas causing damages worth more than one billion US$ and around 200 deaths every year. Thus, it is of paramount importance to identify the landslide causative factors to study them carefully and rank them as per their influence on the occurrence of landslides. The difference image of GIS-derived landslide susceptibility zonation maps prepared for pre- and post-Chamoli earthquake shows the effect of seismic shaking on the occurrence of landslides in the Garhwal Himalaya. An attempt has been made to incorporate seismic shaking parameters in terms of peak ground acceleration with other static landslide causative factors to produce landslide susceptibility zonation map in geographic information system environment. In this paper, probabilistic seismic hazard analysis has been carried out to calculate peak ground acceleration values at different time periods for estimating seismic shaking conditions in the study area. Further, these values are used as one of the causative factors of landslides in the study area and it is observed that it refines the preparation of landslide susceptibility zonation map in seismically active areas like Garhwal Himalayas.  相似文献   
7.
Trace-element data are presented for the first time for any coal seam in India, across a full working section, based on systematically collected channel samples of coal, together with their maceral composition. The trace-element variation curves along the seam profile are presented together with group maceral compositions of Kargali Bottom, Kargali Top, Kargali, Kathara, Uchitdih, Jarangdih Bottom, Jarangdih, and Jarangdih Top seams, East Bokaro coalfield. The Kathara and Uchitdih seams have also been sampled at two other localities and lateral variation in data in their trace-element and maceral compositions is also evaluated.The East Bokaro coals have: Ba and Sr > 1000 ppm; Mn < 450 ppm; Zr < 400 ppm; Ni and V < 250 ppm; Cr < 185 ppm; La < 165 ppm; Cu, Nb, and B < 125 ppm; Pb, Co and Y < 75 ppm; Ga, Sn, Mo, In and Yb < 15 ppm; Ag 2 ppm; and Ge 7 ppm. Petrographically, the coals are dominant in vitrinite (33–97%), rare in exinite (<15%), and semifusinite (0.8–49%) is the dominant inertinite maceral, with variable mineral and shaly matter (11–30%), graphic representation of trace elements versus vitrinite, inertinite, and coal ash indicates the affinity of (a) vitrinite with Cu, Ni, Co, V, Ga and B; (b) inertinite with Nb and B; and (c) coal ash (mineral matter) with Pb, Cu, Ni, La, Mn and Y; Ba, Cr, Sr, Zr, Cu and Ni are of organic as well as inorganic origins.The trend of the variation patterns and average compositions of the different seams are shown to be distinct and different. The variation along the same profile is inferred to be different for different seams of the coalfield.Trace-element data for certain coals of seams from different coalfields in the Gondwana basins of India are presented. There is a wide difference for each of these basins with respect to certain elements. This is suggestive of the proportions of Cu, Ni, V, Y, Ba, Sr, Cr, B, Zr and Ag, characterizing the different Gondwana Basins.  相似文献   
8.
Specialized cosmetic products for infant use are gaining a lot of popularity in the Indian as well as global market, as these products have become an inseparable part of modern urban lifestyle. Baby cosmetics are available in a wide range. They claim to be milder than similar products meant for adult use. However, these products need to be checked for their safety through a battery of assays based on biological systems, along with the ones based on chemical and physical protocols. This study attempts to test different baby cosmetic products using one prokaryotic and one eukaryotic assay system. Chemical protocols prescribed by cosmetic product controlling organizations of India are also used to estimate the quantity of harmful heavy metals like arsenic, lead and cadmium if present in the samples. Few of the products tested have shown significant toxicity as well as heavy metal content. The results hold a lot of importance keeping in mind the extra sensitivity of an infant body. It is further suggested that studies using cell based and in vivo test systems should be done to confirm the findings.  相似文献   
9.
东秦岭石窑沟斑岩钼矿床地质特征及辉钼矿Re-Os年龄   总被引:5,自引:0,他引:5  
在东秦岭钼成矿带最近探明的石窑沟大型钼矿床位于近东西向马超营断裂带与北东向石窑沟-焦园断裂带的交汇部位,获得钼金属储量10余万吨,平均品位0.068%。钼矿化呈细脉-网脉状分布于花岗斑岩体及其围岩熊耳群火山岩中,与矿化有关的围岩蚀变有钾长石化、硅化、绢云母化、黄铁矿化等,具有斑岩型钼矿床的一些基本特点。在矿床中选取5件不同矿化类型的辉钼矿样品,采用ICP-MS法进行Re-Os同位素定年,获得模式年龄131.3±2.4~134.3±2.6Ma,等时线年龄135.2±1.8Ma(MSWD=0.18),形成于早白垩世,与豫西熊耳山地区雷门沟、鱼池岭等钼矿床形成时代相近。据辉钼矿Re含量(8.242×10-6~30.24×10-6)推测,矿床成矿物质主要来自于下地壳。矿床为东秦岭-大别山地区中生代第三期钼成矿作用产物,形成于早白垩世中国东部岩石圈伸展环境。  相似文献   
10.
Water logging is one of the major land degradation processes that restricts the economic and efficient utilisation of soil and land resources in command areas. Since independence, various irrigation schemes, for providing water for agriculture and drinking have been taken up by Central and State agencies in India. In most of these schemes very little efforts have been made for proper drainage. Obstruction of natural drainage by way of construction of roads, railways, aerodrome, various structures, etc., causes the ponding of monsoon runoff on the upstream of the structures. Periodic monitoring of command areas helps in analysing the extent of water logging, and should help in taking suitable remedial measures. Remote sensing and GIS are powerful tools, which could be effectively used to study the dynamic behaviour of waterlogged areas. In this study, waterlogged and salt-affected areas have been estimated in the command area of Ravi-Tawi Irrigation Complex in Jammu region. About 14% of the total command area is water logged/ salt-affected. Being a new project, this area is likely to grow in future when the project runs with its installed capacity, and as the distributaries expand in the command area. Plausible causes of water logging have been discussed, and remedial measures suggested for reclaiming operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号