首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
大气科学   1篇
地球物理   1篇
地质学   4篇
海洋学   2篇
天文学   23篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2013年   1篇
  2011年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   
2.
The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are $$\begin{array}{llll} W & = & 274^{\circ}.05 +1864^{\circ}.6280070\, d\;{\rm for\; (243)\,Ida} \\ W & = & 302^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto,\; and}\\ W & = & 122^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto : I \,Charon}\end{array}$$ where d is the time in TDB days from J2000.0 (JD2451545.0).  相似文献   
3.
Calculation of the ionization state and consequent magnetic Reynolds number for the solar nebula shows that the presence of26Al will result in strong coupling of the gas to magnetic fields. In the absence of26Al,40K will still result in substantial ionization, but the degree of magnetic coupling is much more model dependent.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.also Department of Astronomy.  相似文献   
4.
5.
The significance of meteorite density and porosity   总被引:2,自引:1,他引:1  
Non-destructive, non-contaminating, and relatively simple procedures can be used to measure the bulk density, grain density, and porosity of meteorites. Most stony meteorites show a relatively narrow range of densities, but differences within this range can be useful indicators of the abundance and oxidation state of iron and the presence or absence of volatiles. Typically, ordinary chondrites have a porosity of just under 10%, while most carbonaceous chondrites (with notable exceptions) are more than 20% porous. Such measurements provide important clues to the nature of the physical processes that formed and evolved both the meteorites themselves and their parent bodies. When compared with the densities of small solar system bodies, one can deduce the nature of asteroid and comet interiors, which in turn reflect the accretional and collisional environment of the early solar system.  相似文献   
6.
The satellites of the outer solar system planets are thought to be mixtures of ices and rocky material, in which decay of radioactive nuclides can lead to internal melting and solid-state convection. Time-dependent models indicate that melting will reach its maximum extent approximately 2.0 GYr after formation; bodies of radius <500 km will never melt, and those <750 km in radius will be totally refrozen by present. Surface water flows are not expected for bodies of <1500-km radius. However, even small (100 km) bodies may be unstable against solid-state convection, and their surfaces may show signs of tectonism. Other processes altering the surfaces include sublimation and photolysis of ices. Sublimation likely explains the absence of CH4 ices on any Saturnian satellite except Titan; photolysis explains the absence of NH3 ices on these bodies, and possibly the absence of water ice on the surface of Callisto. The photolysis rate of CH4 also implies a crustal reservoir of CH4 on Titan.  相似文献   
7.
8.
9.
Impact events have played a central role in the life of meteorites. They compacted and lithified the dust from which meteorites are made; produced shock minerals, shock melting, and shock blackening of meteoritic minerals on their parent bodies; turned their parent bodies into rubble; and dispersed at least some pieces of this rubble, sending them to Earth as meteorites. Thus, as well as owing their very existence to the occurrence of catastrophic disruptions, meteorites contain physical ground truth concerning the impact and disruption environment of the solar system. Reviewing these aspects of the impact-meteorite connection, we conclude that impacts severe enough to disrupt asteroids were rare in the earliest stages of the solar nebula, when meteorite parent bodies accreted and were lithified. Likewise, though catastrophic disruptions clearly have occurred over the past several billion years, the small number of exposure events seen in the meteoritic cosmic ray age record indicates that such disruptions at these times also were rare. However, catastrophic disruptions must have been very prevalent during the first billion years of the solar system, resulting in the widespread asteroid macroporosity inferred from the comparison of asteroid bulk densities to meteorite grain densities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号