首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
地球物理   6篇
地质学   17篇
海洋学   1篇
自然地理   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   8篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  1996年   1篇
  1994年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The Happo-O’ne peridotite complex is situated in the northeastern part of the Hida Marginal Tectonic Zone, central Japan, characterized by the high-P/T Renge metamorphism, and is considered as a serpentinite mélange of Paleozoic age. Peridotitic rocks, being massive or foliated, have been subjected to hydration and metamorphism. Their protoliths are mostly lherzolites to harzburgites with subordinate dunites. We found a characteristic mineral assemblage, olivine + orthopyroxene + tremolite + chlorite + chromian spinel, being stable at low-T, from 650 to 750°C, and high-P, from 16 to 20 kbar, tremolite–chlorite peridotites of the tremolite zone. Olivines are Fo88–Fo91, and orthopyroxenes (Mg# = 0.91) show low and homogenous distributions of Al2O3 (up to 0.25 wt%), Cr2O3 (up to 0.25 wt%), CaO (up to 0.36 wt%) and TiO2 (up to 0.06 wt%) due to the low equilibration temperature. Chromian spinels, which are euhedral and enclosed mainly in the orthopyroxenes, have high TiO2, 3.1 wt% (up to 5.7 wt%) on average, and high Cr# [=Cr/(Cr + Al) atomic ratio], 0.95 on average but low Fe3+ [=Fe3+/(Cr + Al + Fe3+) atomic ratio, <0.3]. The bulk-rock chemistry shows that the Happo-O’ne metaperidotites with this peculiar spinel are low in TiO2 (0.01–0.02 wt%), indicating no addition of TiO2 from the outside source during the metamorphism; the high TiO2 of the peculiar spinel has been accomplished by Ti release from Ti-bearing high-T pyroxenes during the formation of low-T, low-Ti silicates (<0.1 wt% TiO2) during cooling. Some dunites are intact from hydration: their olivine is Fo92 and spinel shows high Cr#, 0.72. The Happo-O’ne metaperidotites (tremolite–chlorite peridotites), being in the corner of the mantle wedge, are representative of a hydrous low-T, high-P mantle peridotite facies transitional from a higher T anhydrous peridotite facies (spinel peridotites) formed by in situ retrograde metamorphism influenced by fluids from the subducting slab. They have suffered from low-T (<600°C) retrogressive metamorphism to form antigorite and diopside during exhumation of the Renge metamorphic belt.  相似文献   
2.
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process.  相似文献   
3.
The Qreiya Beds that record the ‘mid-Paleocene event’ at Gabal Nezzazat occur within the Igorina albeari (P3b) Zone and constitute part of a 14-m thick shale succession that ranges in age from Early to Late Paleocene. They are composed of four alternating dark grey and brown shale beds, which are thinly laminated, phosphatic, organic-rich and extremely sulphidic. They are characterized by distinct enrichment and high peak anomalies in chalcophiles (Zn, Co, Ni, Cu and Pb) and organic association elements (V and Cr), especially within the brown organic-rich beds. It is concluded that these elements are incorporated into the phosphatic debris, sulphides and organic matter. In contrast, the grey beds are enriched in clay minerals and quartz. Clay mineral assemblages indicate alternating periods of warm/humid climate (high kaolinite) and dry climate (low kaolinite) during the formation of the grey and brown beds, respectively. The sediments of the Qreiya Beds yield lithological, biotic, geochemical and mineralogical data indicative of suboxic/anoxic marine environments as a result of high productivity and/or upwelling. The top metre of the succession below the Qreiya Beds is characterized by a progressive change from faunas dominated by praemurcurids to faunas dominated by Morozovilids, and by a progressive upward decrease in δ13Ccarb and δ18Ocarb values. The foraminiferal faunal change may reflect shallowing and warming preceding deposition of the Qreiya Beds. The change in isotopic values is inferred to be the result of surface weathering, fluvial input and diagenesis with no evidence of any primary change that could support presence of a hyperthermal event.  相似文献   
4.
The prograde deserpentinized peridotites from the talc zone in the Happo-O’ne complex, central Japan, show differences in their field relation and mineral assemblage with the high-P retrograde peridotites of the other part of the complex. They show a mineral assemblage, olivine + talc + antigorite ± prograde tremolite ± chlorite, formed by thermal metamorphism around the granitic intrusion at T, 500-650 °C and P < 7 kbar. The olivine has numerous opaque inclusions and high Fo (91.5-96.5) relative to the retrograde olivine, reflecting its formation by deserpentinization. The prograde tremolite, which is low in Al2O3 (<1.0 wt.%), Cr2O3 (<0.35 wt.%), and Na2O (<0.6 wt.%) but high in Mg# (up to 0.98) and SiO2 (up to 59.9 wt.%), is different in size, shape and chemistry from the retrograde tremolite. The prograde peridotites display a U-shaped REE pattern (0.02-0.5 times PM), similar to diopside-zone retrograde metaperidotites, possible protoliths. They are enriched in LILE (e.g., Cs, Pb, Sr, Rb) relative to HFSE (e.g., Ta, Hf, Zr, Nb), like their protoliths, because of their local re-equilibration with the fluid released during dehydration of the protoliths. They have high contents of REE and some trace elements (e.g., Cs, Th, U, Ta) relative to their protoliths because of an external-element addition from the granitic magma. In-situ analyses of peridotitic silicates confirmed that the prograde tremolite and talc display a spoon-shaped primitive mantle (PM)-normalized REE pattern (0.1-3 times PM) in which LREE are higher than HREE contents. The prograde tremolite is depleted in Al, Na, Cr, Sc, V, Ti, B, HREE and Li, but is enriched in Si, Cs, U, Th, HFSE (Hf, Zr, Nb, Ta), Rb and Ba relative to the retrograde tremolite; the immobile-element depletion in this tremolite is inherited from its source (antigorite + secondary diopside), whereas the depletion of mobile elements (e.g., Li, B, Na, Al) is ascribed to their mobility during the deserpentinization and/or the depleted character of the source of tremolite. The enrichment of HFSE and LILE in the prograde tremolite is related to an external addition of these elements from fluid/melt of the surrounding granitic magma and/or in situ equilibrium with LILE-bearing fluid released during dehydration of serpentinized retrograde metaperidotites and olivine-bearing serpentinites (protoliths). The prograde olivine is higher in REE and most trace-element contents than the retrograde one due to the external addition of these elements; it is enriched in B, Co and Ni, but depleted in Li that was liberated during deserpentinization by prograde metamorphism.  相似文献   
5.
Land surface schemes (LSSs) represent the interface between land surface and the atmosphere in general circulation models (GCMs). Errors in LSS‐simulated heat and moisture fluxes can result from inadequate representation of hydrological features and the derivation of effective surface parameters for large heterogeneous GCM gridboxes from small‐scale observations. Previous assessments of LSS performance have generally compared simulated heat and moisture fluxes to observations over a defined experimental domain for a limited period. A different approach has been evaluated in this study, which uses a fine‐resolution calibrated hydrological model of the study basin to provide a quasi‐observed runoff series for direct comparison with simulated runoff from a selected LSS at GCM scale. The approach is tested on two GCM gridboxes covering two contrasting regions within the Nile Basin. Performance is mixed; output from the LSS is generally compatible with that of the fine‐resolution model for one gridbox while it cannot reproduce the runoff dynamics for the other. The results also demonstrate the high sensitivity of runoff and evapotranspiration to radiation and precipitation inputs and show the importance of subtle issues such as temporal disaggregation of climatic inputs. We conclude that the use of a fine‐resolution calibrated model to evaluate a LSS has several advantages, can be generalized to other areas to improve the performance of global models and provides useful data that can be used to constrain LSS parameterizations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
The macrophyte distribution of Lake Manzala is described in relation to water depth, salinity, dissolved oxygen, pH, Cl, NO 3 and PO 4 3– . Changes in species composition of macrophytes are visualised by means of multivariate analysis. The TWINSPAN classification and CANOCO ordination programs (DCA & CCA) were used to analyse the data set. The classification of 100 stands revealed 8 vegetation groups which indicated eleven dominant communities. These arePhragmites australis, Typha domingensis, Scirpus maritimus, Echinochloa stagnina and Ludwigia stolonifera as emergent hydrophytes;Eichhornia crassipes andAzolla filiculoides as floating hydrophytes. The dominant submerged hydrophytes arePotamogeton pectinatus, Najas armata, Ceratophyllum demersum andRuppia maritima. The northern part of the lake with low depth and relatively high salinity has low species diversity (mainly emergent species). Species diversity increases with decreasing salinity and increasing eutrophication near the mouths of the drains in the western and southern parts of the lake. The recent changes in species distribution can be attributed to the effects of salinity, water depth and drainage water. A checklist of macrophytes in the lake is appended.  相似文献   
7.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   
8.
Lithological discrimination of Neoproterozoic rocks occupying Nugrus-Hafafit area, South Eastern Desert of Egypt, has been carried out using Operational Land Imager (OLI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors’ imagery data. The applicable processing enhancement techniques include optimum index factor (OIF), band ratioing, principal component analysis (PCA), and minimum noise fraction (MNF) transform. The area comprises varieties of low-grade metamorphosed ophiolitic mélange and island-arc rocks, thrusting over high-grade metamorphic gneissic core complexes, and intruded by syn-, late-, and post-tectonic granitoids. The OLI band ratio 6/7 discriminates clearly the ophiolitic serpentinites-talc-carbonate rocks, while 4/5 ratio image is able to separate between mafic and felsic rocks. Moreover, the ASTER band ratio 6/8 is used to distinguish the amphibole-bearing rocks, including amphibolite and hornblende gneiss. The OLI and ASTER second principal component (PC2) images reflect the contrast spectral behavior of ophiolitic mélange rocks through visible-near-infrared (VNIR) and shortwave (SWIR) regions. The OLI-PC3 shows the ability to delineate the Fe-rich rocks, including amphibolite and metamafics, while ASTER-PC3 is effective for quartz-feldspathic granites and psammitic gneisses. Visual interpretation and integration of processed data with petrography and field investigation resulted in complete differentiation for the different lithologies and creation of a new detailed geological map of Nugrus-Hafafit area.  相似文献   
9.
The Gavbast karstic aquifer located in southern Iran is in direct contact with an exposed salt diapir. To assess the influence of the diapir on the quality of groundwater in the karstic aquifer, electrical conductivity, total dissolved solids, flow rate, temperature and major ion concentrations were measured at 57 sampling sites, including springs, surface waters and wells. A conceptual model of groundwater flow is proposed for the Gavbast karstic aquifer based on the geological setting, water budget, local base of erosion, and hydrochemistry of the sampling sites. The model suggests two subbasins in the Gavbast Anticline draining into two distinct discharging alluvial sections. Unexpectedly, groundwater discharging from the carbonate Gavbast aquifer is saline or brackish and water is of chloride type. The study indicates that the source of salinity of the Gavbast aquifers is infiltration of surface diapir-derived brine into the aquifer. The contribution of the diapir brine in the Gavbast karst aquifer is calculated about 4 L/s, using chloride mass balance. Construction of salt basins to evaporate brine discharging from the diapir springs is proposed to reduce the salinity of karst water. A row of strategically placed wells in the Gavbast karst aquifer would potentially exploit large volumes of fresh groundwater before it is contaminated by the salt. Such low-cost remediation should allow the agricultural exploitation of 40 km2 of currently barren land.  相似文献   
10.
The Precambrian basement rocks exposed along Qift–Quseir asphaltic road, central Eastern Desert of Egypt, exhibit two contrasted tectonic units, each of which has its own lithology structural style and grade of metamorphism. They are intruded by dolerite and diorite dykes. The alkali (Na2O+K2O) and TiO2 contents increase whereas Al2O3, FeO, MgO, CaO and MnO decrease with increasing SiO2 from dolerites to diorites. The trace elements Ti, Zr, Cr, Y and Ni indicate that the dolerites are tholeiitic with slight tendency toward calc-alkaline and formed from basaltic magma in an active continental margin, while diorites are calc-alkaline and were formed by fractional crystallisation of high-alumina basaltic magma in an island arc and active continental margin tectonic environment where they probably represent the forerunner of G1 granites. The molecular ratios Mg values (MgO×100/MgO+FeO) of dolerites range from 47 to 49 while those of diorite range from 51 to 59, indicating that the dolerite and diorite have suffered mild fractionation. Mineral chemistry for the diorites shows that the amphiboles are classified as magnesiohornblende and the plagioclase composition is An39–42 (i.e. the narrow range indicate that the pluton has not suffered extensive fractional crystallisation). The Al content of amphibole displays significant variation with pressure and temperature, also the change of the Ca/(Ca+Na) ratio of plagioclase is dependent on temperature. The amphibole–plagioclase geothermobarometer suggested the P-T formation conditions of studied dykes as 2 kbar and 600 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号