首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   6篇
地球物理   1篇
地质学   29篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   4篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1995年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Fission track dating on detrital zircons of Alpine debris in the Swiss molasse basin provides information about the erosion history of the Central Alps and the thermal evolution of source terrains. During Oligocene times, only sedimentary cover nappes, and Austroalpine basement units were eroded. Incision into Austroalpine basement units is indicated by increasing importance of Cretaceous cooling ages in granite pebbles upsection. Erosion of Penninic basement units started between 25 and 20 Ma. Early Oligocene zircon FT ages show that Penninic basement units were exposed at ∼20 Ma. Deeper Penninic units of the Lepontine Dome became exposed first at ∼14 Ma, contemporaneously with the opening of the Tauern window in the Eastern Alps. A middle Miocene cooling rate of 40 °C Myr−1 is deduced for the Lower Penninic units of the Lepontine Dome.  相似文献   
2.
Sandwiched between the Adriatic Carbonate Platform and the Dinaride Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sediments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and fission-track data as well as biostratigraphic evidence allow us to reconstruct the palaeogeology of the source areas of the Bosnian Flysch basin in late Mesozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was shortly followed by exhumation of the overriding oceanic plate. Trench sedimentation was controlled by a dual sediment supply from the sub-ophiolitic high-grade metamorphic soles and from the distal continental margin of the Adriatic plate. Following obduction onto Adria, from the Jurassic–Cretaceous transition onwards a vast clastic wedge (Vranduk Formation) was developed in front of the leading edge, fed by continental basement units of Adria that experienced Early Cretaceous synsedimentary cooling, by the overlying ophiolitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs grown on the thrust wedge complex. Following mid-Cretaceous deformation and thermal overprint of the Vranduk Formation, the depozone migrated further towards SW and received increasing amounts of redeposited carbonate detritus released from the Adriatic Carbonate Platform margin (Ugar Formation). Subordinate siliciclastic source components indicate changing source rocks on the upper plate, with ophiolites becoming subordinate. The zone of the continental basement previously affected by the Late Jurassic–Early Cretaceous thermal imprint has been removed; instead, the basement mostly supplied detritus with a wide range of pre-Jurassic cooling ages. However, a c. 80 Ma, largely synsedimentary cooling event is also recorded by the Ugar Formation, that contrasts the predominantly Early Cretaceous cooling of the Adriatic basement and suggests, at least locally, a fast exhumation.  相似文献   
3.
A silicic ignimbrite flare-up episode occurred in the Pannonian Basin during the Miocene, coeval with the syn-extensional period in the region. It produced important correlation horizons in the regional stratigraphy; however, they lacked precise and accurate geochronology. Here, we used U–Pb (LA-ICP-MS and ID-TIMS) and (U–Th)/He dating of zircons to determine the eruption ages of the youngest stage of this volcanic activity and constrain the longevity of the magma storage in crustal reservoirs. Reliability of the U–Pb data is supported by (U–Th)/He zircon dating and magnetostratigraphic constraints. We distinguish four eruptive phases from 15.9 ± 0.3 to 14.1 ± 0.3 Ma, each of which possibly includes multiple eruptive events. Among these, at least two large volume eruptions (>10 km3) occurred at 14.8 ± 0.3 Ma (Demjén ignimbrite) and 14.1 ± 0.3 Ma (Harsány ignimbrite). The in situ U–Pb zircon dating shows wide age ranges (up to 700 kyr) in most of the crystal-poor pyroclastic units, containing few to no xenocrysts, which implies efficient recycling of antecrysts. We propose that long-lived silicic magma reservoirs, mostly kept as high-crystallinity mushes, have existed in the Pannonian Basin during the 16–14 Ma period. Small but significant differences in zircon, bulk rock and glass shard composition among units suggest the presence of spatially separated reservoirs, sometimes existing contemporaneously. Our results also better constrain the time frame of the main tectonic events that occurred in the Northern Pannonian Basin: We refined the upper temporal boundary (15 Ma) of the youngest counterclockwise block rotation and the beginning of a new deformation phase, which structurally characterized the onset of the youngest volcanic and sedimentary phase.  相似文献   
4.
Fission-track cooling ages of detrital apatite (AFT) in the East Alpine Molasse Basin display age groups corresponding to geodynamic events in the orogen since Jurassic times. These age groups are typical of certain thermotectonic units, which formed a patchwork in the Swiss and Eastern Alps. By a combination of petrographic and thermochronologic data, progressive erosion of source terrains is monitored in different catchments since the Oligocene. The AFT cooling ages show a decrease in lag time until when rapidly cooled debris derived from tectonically exhumed core complexes became exposed. After termination of tectonic exhumation, lag times of debris derived from the core complexes increased. Neither on the scale of the entire Eastern Alps, or on the scale of individual catchments, steady-state exhumation is observed, due to the highly dynamic changes of exhumation rates since Late Eocene collision.  相似文献   
5.
K-Ar ages of illite-muscovite and fission track ages of zircon and apatite were determined from various lithotypes of the Bükkium, which forms the innermost segment of the Western Carpathians. The stratigraphic ages of these Dinaric type formations cover a wide range from the Late Ordovician up to the Late Jurassic. The grade of the orogenic dynamo-thermal metamorphism varies from the late diagenetic zone through the anchizone up to the epizone (chlorite, maximally biotite isograd of the greenschist facies). The K-Ar system of the illite-muscovite in the < 2 m grain-size fraction approached equilibrium only in epizonal and high-temperature anchizonal conditions. The orogenic metamorphism culminated between the eo-Hellenic (160-120 Ma) phase connected to the beginning of the subduction in the Dinarides, and the Austrian (100-95 Ma) phase characterized by compressional crustal thickening. No isotope geochronological evidence was found for proving any Hercynian recrystallization. The stability field of fission tracks in zircon was approached using the thermal histories of the different tectonic units. A temperature less than 250°C and effective heating time of 20–30 Ma had only negligible effects on the tracks, whereas total annealing was reached between 250 and 300°C. Apatite fission track ages from the Paleozoic and Mesozoic formations show that the uplift of the Bükk Mountains occurred only in the Tertiary (not earlier than ca. 40 Ma ago). Thermal modeling based on apatite fission track length spectra and preserved Paleogene sediment thickness data proved that the Late Neogene burial of the recently exhumed plateau of the Bükk Mountains exceeded 1 km.  相似文献   
6.
The thermal evolution of the only known Alpine (Cretaceous) granite in the Western Carpathians (Rochovce granite) is studied by low-temperature thermochronological methods. Our apatite fission track and apatite (U-Th)/He ages range from 17.5 ± 1.1 to 12.9 ± 0.9 Ma, and 12.9 ± 1.8 to 11.3 ± 0.8 Ma, respectively. The data thus show that the Rochovce granite records a thermal event in the Middle to early Late Miocene, which was likely related to mantle upwelling, volcanic activity, and increased heat flow. During the thermal maximum between ~17 and 8 Ma, the granite was heated to temperatures ? 60 °C. Increase of cooling rates at ~12 Ma recorded by the apatic fission track and (U-Th)/He data is primarily related to the cessation of the heating event and relaxation of the isotherms associated with the termination of the Neogene volcanic activity. This contradicts the accepted concept, which stipulates that the internal parts of the Western Carpathians were not thermally affected during the Cenozoic period. The Miocene thermal event was not restricted to the investigated part of the Western Carpathians, but had regional character and affected several basement areas in the Western Carpathians, the Pannonian basin and the margin of the Eastern Alps.  相似文献   
7.
Precise provenance analysis of andesite and dacite pebbles from conglomerates in the Eastern Alpine Molasse zone, using geochemical and geochronological methods, provides evidence for a synorogenic volcanic chain in the Eastern Alps which is completely eroded today. This volcanism was related to Periadriatic magmatism along the Periadriatic lineament and took place in the Palaeogene, roughly between 40 and 30 Ma. The occurrence of remnants of these volcanic rocks together with other marker lithologies in the Eastern Alpine Molasse, implies an early to middle Miocene drainage system which was, in some respects, similar to the present Inn river system, but had a considerably larger catchment area, reaching farther south. The Palaeo-Inn drained the central and eastern sections of the Periadriatic magmatic belt to the northern foreland basin.  相似文献   
8.
The provenance of igneous clasts and arenitic sediment enclosed within the Bakony Molasse was studied using geochemical and geochronological methods. The majority of igneous clasts were eroded from the Oligocene Periadriatic magmatic belt. A part of the andesite material has Eocene formation age. Rhyolitic pebbles originated from Permian sequences of the Greywacke zone or the Gurktal Alps. Apatite fission track (FT) ages from the sandstone matrix (age clusters at ~75 and ~30 Ma) are typical for the Austroalpine nappe pile and for the cooling ages of Periadriatic magmatic belt. Variscan detrital zircon FT ages indicate source areas that had not suffered Alpine metamorphism, such as the Bakony Mountains, Drauzug and the Southern Alps. Another group of detrital zircon grains of Late Triassic-Jurassic FT age (mean: ~183 Ma) marks source zones with Mesozoic thermal overprint such as the Gurktal Alps and some Austroalpine regions. Zircon grains with Oligocene FT age (mean: ~34.7 Ma) were derived from the Periadriatic intrusives and their contact zones. On the basis of the new data, we propose that the ancestor of the recent Drava River had already existed in Oligo-Miocene time and distributed eroded material of the southern Eastern Alps to the east.  相似文献   
9.
Petrological and geochronological investigations were carried out on metamorphic rocks of the Veporic unit (Inner Western Carpathians) in northern Hungary. K/Ar and Ar/Ar data on micas and amphibole show only Alpine ages (mostly in the range of 87-95 Ma) in this basement unit. Thermobarometric calculations yield lower amphibolite facies peak conditions (ca. 550냴 °C and 9ǃ kbar) for the Eoalpine metamorphic event. Complex evolution of gneissic rocks is reflected by the presence of discontinuously zoned garnets, the cores of which may represent relics of a pre-Alpine (presumably Variscan) thermal event. Zircon fission track (FT) data in the narrow range of 75-77.5 Ma indicate that this portion of the Veporic unit was emplaced to shallow crustal levels already during the Senonian time. The relative minor difference between zircon FT and K/Ar or Ar/Ar ages suggests very rapid cooling during the Late Cretaceous, most probably related to the extensional unroofing of the Veporic core complex. The obtained cooling ages do not support previous models of Tertiary uplift and exhumation of the Veporic unit along the Hurbanovo-Diósjeni Line.  相似文献   
10.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号