首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
大气科学   1篇
地球物理   11篇
地质学   4篇
海洋学   6篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有22条查询结果,搜索用时 984 毫秒
1.
An integrated GIS-based tool (GTIS) was constructed to estimate site effects related to the earthquake hazards in the Gyeongju area of Korea. To build the GTIS for the study area, intensive site investigations and geotechnical data collections were performed and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data in accordance with the procedure developed to build the GTIS. For practical applications of the GTIS used to estimate the site effects associated with the amplification of ground motion, seismic microzoning maps of the characteristic site period and the mean shear wave velocity to a depth of 30 m were created and presented as a regional synthetic strategy addressing earthquake-induced hazards. Additionally, based on one-dimensional site response analyses, various seismic microzoning maps for short- and mid-period amplification potentials were created for the study area. Case studies of seismic microzonations in the Gyeongju area verified the usefulness of the GTIS for predicting seismic hazards in the region.  相似文献   
2.
Evaluation of density in layer compaction using SASW method   总被引:1,自引:0,他引:1  
SASW test, which is non-intrusive and rapid in the field application, was used to evaluate the layer density in the roller compaction without performing the complicated inversion process. The concept of normalized shear wave velocity was introduced to minimize the effect of confinement in the density evaluation. SASW test was performed to determine the shear wave velocity of the layer, and the free–free resonant column (FF–RC) test was adopted to determine the correlation between the normalized shear wave velocity and density of the site, which is almost unique independent of confinement. Testing and data reduction procedures of both tests were briefly discussed and an evaluation procedure of the field density was proposed by effectively combining in-situ shear wave velocity determined by the SASW test with the correlation between the normalized shear wave velocity and the density determined by the FF–RC test. Finally, the feasibility of the proposed method was verified by performing a field case study at Hoengsung road construction site. Field densities determined by the proposed method matched well with those determined by sand cone tests, showing the potential of applying the proposed method in the field density evaluation.  相似文献   
3.
The impact of climate change on a large river reservoir ecosystem was investigated. Long-term meteorological data showed that recent climate change, including warmer winters, increased precipitation intensity and extended dry periods, may have influenced the basin of Lake Paldang, the most downstream reservoir of a series of on-river reservoirs. Extreme hydrologic events and climate warming, acting independently and in combination, appear to be related to changes in the Lake Paldang ecosystem. A significant increase in chlorophyll a concentrations in early spring corresponded to the timing of ice break-up. An increase in winter temperatures, which resulted in a shorter time period of ice-cover and earlier ice break-up, appears to have stimulated phytoplankton growth in winter and early spring. Repeated intensive and extended influxes of turbid water, associated with more frequent extreme rainfall events, have increased concentration of suspended solids and may have influenced the biotic community structure of Lake Paldang. In the mid-2000s, the area vegetated by submerged hydrophytes, the abundance and biomass of the phylum Mollusca, as well as the abundance of fish from the subfamily Acheilognathinae, which spawn in the body of bivalve molluscs, was all smaller than in the late 1980s and early 1990s. Together, these results suggest that climate change may have contributed directly and indirectly to changes in each trophic level of the Lake Paldang ecosystem.  相似文献   
4.
5.
The earthquake hazard has been evaluated for 10 km×10 km area around Kyeongju. The ground motion potentials were determined based on equivalent linear analysis by using the data obtained from in situ and laboratory tests. In situ tests include 16 boring investigations, 4 crosshole, 12 downhole, 26 spectral analysis of surface waves tests, and in the laboratory, resonant column tests were performed. The peak ground accelerations range between 0.141g and 0.299g on collapse level earthquake and between 0.050g and 0.120g on operation level earthquake, respectively, showing the high potential of amplification in the deep alluvial layer in Kyeongju area. Distribution maps of site amplification for the peak acceleration, amplification factors (Fa and Fv) and dominant site period of Kyeongju are constructed using geographic information system tools. The amplification factor based on the Korean seismic design guide underestimated the motion in short range and overestimated the motion in mid-period range in Kyeongju. The importance of site-specific analysis and the need for the improved site characterization method are introduced.  相似文献   
6.
In order to effectively control vibration related problems, the development of a reliable vibration monitoring system and the proper assessment of attenuation characteristics of various vibrations are essential. Various ground vibrations caused by train loading, blasting, friction pile driving and hydraulic hammer compaction were measured using 3D geophones inside of the borehole as well as on the ground surface, and the propagation and attenuation characteristics of various source generated vibrations were investigated by analyzing particle motions. For the geometric modeling of various vibrations, the types of various sources and their induced waves were characterized and the geometric damping coefficients were determined. The measured attenuation data matched well with the predicted data when using the suggested geometric damping coefficient, and the estimated soil damping ratios were quite reasonable taking soil type of the site and experiencing strain level into consideration.  相似文献   
7.
Lee  Moon-Gyo  Ha  Jeong-Gon  Cho  Hyung-Ik  Sun  Chang-Guk  Kim  Dong-Soo 《Acta Geotechnica》2021,16(4):1187-1204

Verifying the seismic performance of port structures when the force balance limit is exceeded is important for the performance-based seismic design of gravity-type quay walls. Over the last three decades, performance verification methods have been developed that consider the effects of the design earthquake motion, geotechnical conditions, and structural details on the deformation of a quay wall to accurately predict earthquake-induced damage. In this study, representative performance verification methods (i.e., simplified dynamic analysis methods extending from the Newmark sliding block method and performance-based seismic coefficients developed in Japan) were quantitatively assessed with actual cases of earthquake-damaged quay walls and the results of dynamic centrifuge tests previously conducted under various conditions (i.e., different wall heights, earthquake motions and the thickness of subsoil). The dynamic centrifuge test results suggested directions for improving the performance-based seismic coefficients of the representative methods, while their field applicability and reliability were confirmed according to the actual earthquake records.

  相似文献   
8.
A modified parallel IWAN model for cyclic hardening behavior of sand   总被引:2,自引:0,他引:2  
A modified parallel IWAN model, which includes a cyclic hardening function, is proposed and verified. The proposed model consists of elasto-perfect plastic and isotropic hardening elements. The model is able to predict cyclic hardening behavior through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule with its own behavior characteristics. The cyclic hardening function is developed based on the irrecoverable plastic strain (accumulated shear strain) of dry sand during shearing, which is assumed to be a summation of shear strain beyond the cyclic threshold. Symmetric-limit cyclic loading and irregular loading tests were performed to determine model parameters and to verify the behavior of the proposed model. Finally, a one-dimensional site response analysis program (KODSAP) is developed by using the proposed model. The effects of cyclic hardening behavior on site response are evaluated using KODSAP.  相似文献   
9.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   
10.
Dong-Soo Hur   《Ocean Engineering》2004,31(10):83-1311
This study investigates the wave deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on the slope. Experiments were conducted in a three-dimensional wave basin equipped with a multi-directional random wave generator. Measurements of the free surface elevations around an impermeable submerged breakwater were carried out using 19 capacitance-type wave gages. In addition, a numerical model is proposed in three-dimensional random wave field. It is shown that the numerical results reproduce the general trend of the experimental results well. Investigations are made to study the effect of the spreading parameter Smax and bottom topography (bottom slope and submerged breakwater) on the wave deformation. It is pointed out that concentration of wave energy with larger values of the spreading parameter Smax is located within narrow limits in onshore side of the submerged breakwater. Furthermore, the supplementary discussion is made by means of numerical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号