首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   6篇
地质学   17篇
海洋学   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Paleoseismological studies confirm that the Uimon basin is thrust by its northern mountain border along the active South Terekta fault. The latest motion along the fault in the 7-8th centuries AD induced an earthquake with a magnitude of Mw= 7.4-7.7 and a shaking intensity of I = 9-11 on the MSK-64 scale. The same fault generated another event (M > 7, I = 9-10), possibly, about 16 kyr ago, which triggered gravity sliding. The rockslide dammed the Uimon valley and produced a lake, where lacustrine deposition began about 14 ± 1 kyr ago, and a later M > 7 (I = 9-10) earthquake at ~ 6 ka caused the dam collapse and the lake drainage. Traces of much older earthquakes that occurred within the Uimon basin are detectable from secondary deformation structures (seismites) in soft sediments deposited during the drainage of a Late Pleistocene ice-dammed lake between 100 and 90 ka and in ~ 77 ka alluvium. The magnitude and intensity of these paleoearthquakes were at least M > 5.0-5.5 and I > 6-7.  相似文献   
2.
Palaeoseismological and archaeoseismological studies in the Kurai fault zone, along which the Kurai Range is thrust onto Cenozoic deposits of the Chuya intramontane basin, led to the identification of a long reverse fault scarp 8.0 m high. The scarp segments are primary seismic deformations of large ancient earthquakes. The scarp’s morphology, results of trenching investigations, and deformations of Neogene deposits indicate a thrusting of the piedmont plain onto the Kurai Range, which is unique for the Gorny Altai. Similarly for Northern Tien Shan, we explain this by the formation of both a thrust transporting the mountain range onto the depression and a branching thrust dislocation that forms the detected fault scarp. In a trench made in one of the scarp segments, we identified the parameters of the seismogenic fault – a thrust with a 30° dipping plane. The reconstructed displacement along the fault plane is 4.8 m and the vertical displacement is 2.4 m, which indicates a 7.2–7.6 magnitude of the ancient earthquake. The 14C age of the humus-rich loamy sand from the lower part of the colluvial wedge constrains the age of the earthquake at 3403–3059 years BP. Younger than 2500 years seismogenic displacements along the fault scarp are indicated by deformations of cairn structures of the Turalu–Dzhyurt-III burial mound, which was previously dated as iron age between the second half of I BC and I AD.  相似文献   
3.
In the Kurai fault zone, travertine forms a matrix cementing clastic material of colluvial and glacial deposits or rarely forming a stockwork in a system of fractures in Palaeozoic rocks. The regular change of composition of solutions in the process of travertine formation has resulted in change of stable Mg–calcite by Sr–aragonite. According to the carbon isotopic composition, the travertine has intermediate genesis between thermal and meteogene. The light oxygen isotopic composition of CaCO3 indicates formational water input. The carbonates inherited Y, Sr, U, and Ni and in some areas, V, As, and Zn from the endogeneous water sources. Given that the Kurai zone travertine cements the Late Pleistocene–Holocene sediments and 14C dating of the carbonates gives a range of >40 000–3475 ± 35 years, the faults serving as routes of migration of the solutions forming the travertine should be considered as active structures.  相似文献   
4.
This paper presents an integrated measurement technique based on DC methods (vertical electrical sounding, electrical resistivity tomography) which was used to identify faults and determine their geoelectric parameters in the western part of the Chuya basin. New information on the structure of the Chagan River valley located in the zone of the disastrous 27 September 2003 Chuya earthquake has been obtained from the results of these methods. Geoelectric cross-sections of the sedimentary sequence and the upper part of the basement were obtained from VES data, showing the block structure of the study area. Electrical resistivity tomography sections confirm the presence of a major fault between basement blocks of different heights and indicate the presence of faults bounding the valley on its right side and in the southwestern part.  相似文献   
5.
We study earthquake-induced soft-sediment deformation (seismites) in reference Quaternary sections of southeastern Altai. Sediments in the sections bear signature of liquefaction and fluidization and deformation is localized in thin (few centimeters to 0.5–1.0 m) continuously striking and frequently repeated layers sandwiched between undeformed sediments. The soft-sediment deformation records coseismic motion of different slip geometries. Seismic origin is also inferred for layers and lenses of coarse colluvium slid into the lake bottom from the slopes, which intrude plane-bedded silt and sand and vary in thickness from a few centimeters to one meter. The occurrence of seismic soft-sediment deformation at different stratigraphic levels of the Quaternary and in the Upper Pliocene Beken Formation confirms the high seismicity of southeastern Altai in Quaternary time.  相似文献   
6.
7.
Doklady Earth Sciences - A system of 22 km long surface rupture produced by paleoearthquakes has been mapped for the first time along the Kubadru Fault which delineates the Kokorya Basin in the...  相似文献   
8.
9.
The study and radiocarbon dating of the low alluvial terraces of the Chon-Aksuu River, in the Northern Issyk-Kul region, which were broken by the Kebin (Kemin) earthquake of 1911 (Ms = 8.2, Io = 10 to 11), are carried out. The obtained radiocarbon dated ages refer to the second half of the Holocene. Since that time, at least eight strong earthquakes took place along this (Chon-Aksuu) segment of the Aksuu border fault. Three seismic events, including the earthquake of 1911 occurred in the second millennium A.D. This outburst of seismic energy was preceded by two millennia of seismic quiescence, which set in after another pulse of seismic activation. The latter lasted for 1.5 millennia and included five strong earthquakes. The recurrence period of seismic events during the activations is 300–600 years. Hence, the seismic regime along the Chon–Aksuu segment of the Aksuu border fault in the second half of the Holocene was a succession of two seismic activations, each with a duration of 1.0–1.5 ka, which were separated by a 2-ka interval of seismic quiescence. Therefore, the absolute datings of the river terraces of different ages which have been broken by a seismogenic rupture can serve as a reliable source of information about the age of the strong earthquakes that occurred along the seismogenic fault.  相似文献   
10.
The Sary-Bulun archeological sites located along the Great Silk Route of medieval times are studied. The study revealed a number of the deformations of seismogenic origin: tilts, shifts, and collapse and lateral bends of walls as well as long fissures in corner parts of the rooms. Judging by archeological artifacts, the seismic event occurred at the end of the 12th–beginning of the 13th century AD. Judging by degree of damage, the intensity of this ancient earthquake was I ≥ VIII on the MSK-64. The source of the seismic oscillations was apparently located in the faults cutting the active Boz-Barmak anticline. The studied archeological sites are located on the western limb of this anticline structure. In the medieval period, the Sary-Bulun settlements were the largest metallurgic centers of the Issyk-Kul depression and, thus, they are of a great significance for studying industrial processes of that time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号