首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
地球物理   4篇
地质学   11篇
海洋学   2篇
自然地理   2篇
  2016年   2篇
  2013年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
The Trans-Pecos Closed Basin is a hydrographically closed region covering 20,000 km2centered on Salt Basin, 160 km east of El Paso, Texas. Geomorphic and limnetic evidence have been used to identify four major highstands for Lake King during the last glacial maximum (LGM). Additional geomorphic features from a second, recently identified, paleolake, Lake Sacramento, have been found in the Beargrass subbasin, a nested subbasin approximately 75 km northwest of Salt Basin. Radiocarbon ages of the organic material in Lake King sediments date four abrupt climate changes and rapid lacustrine transgressions during the LGM with a quasi-periodicity of 2000 yr. Geomorphic evidence in the Beargrass subbasin identifies lake cycles contemporaneous with those in Lake King. The dates for these transgressions correlate with the dates of freshening events identified by researchers in paleolake basins elsewhere in New Mexico. The quasi-periodicity of the events approximates that of Dansgaard–Oeschger events identified from Greenland ice cores. The contemporaneity of the Trans-Pecos transgressions with transgressive events in other basins in the region suggests that paleolakes in the region were in phase with respect to abrupt climate changes during the latter stages of the LGM.  相似文献   
2.
Lake Bonneville was a climatically sensitive, closed-basin lake that occupied the eastern Great Basin during the late Pleistocene. Ongoing efforts to refine the record of lake level history are important for deciphering climate conditions in the Bonneville basin and for facilitating correlations with regional and global records of climate change. Radiocarbon data from this and other studies suggest that the lake oscillated at or near the Provo level much longer than depicted by current models of lake level change. Radiocarbon data also suggest that the lake dropped from threshold control much more rapidly than previously supposed. These revisions to the Lake Bonneville hydrograph, coupled with independent evidence of climate change from vegetation and glacial records, have important implications for conditions in the Bonneville basin and during the Pleistocene to Holocene transition.  相似文献   
3.
The Stansbury shoreline, one of the conspicuous late Pleistocene shorelines of Lake Bonneville, consists of tufa-cemented gravel and barrier beaches within a vertical zone of about 45 m, the lower limit of which is 70 m above the modern average level of Great Salt Lake. Stratigraphic evidence at a number of localities, including new evidence from Crater Island on the west side of the Great Salt Lake Desert, shows that the Stansbury shoreline formed during the transgressive phase of late Pleistocene Lake bonneville (sometime between about 22,000 and 20,000 yr B.P.). Tufa-cemented gravel and barrier beaches were deposited in the Stansbury shorezone during one or more fluctuations in water level with a maximum total amplitude of 45 m. We refer to the fluctuations as the Stansbury oscillation. The Stansbury oscillation cannot have been caused by basin-hypsometric factors, such as stabilization of lake level at an external overflow threshold or by expansion into an interior subbasin, or by changes in drainage basin size. Therefore, changes in climate must have caused the lake level to reverse its general rise, to drop about 45 m in altitude (reducing its surface area by about 18%, 5000 km2), and later to resume its rise. If the sizes of Great Basin lakes are controlled by the mean position of storm tracks and the jetstream, which as recently postulated may be controlled by the size of the continental ice sheets, the Stansbury oscillation may have been caused by a shift in the jetstream during a major interstade of the Laurentide ice sheet.  相似文献   
4.
The reef line fishery (RLF) in eastern Torres Strait (ETS) is unique in that it has both a commercial indigenous sector and a commercial non-indigenous sector. Recently, concerns have been expressed by all stakeholders about the long-term sustainability of the fishery. These concerns have been exacerbated by the lack of detailed catch and effort information from both sectors, which has precluded any formal assessment of the fishery. In this paper, we characterise the harvest patterns and effort dynamics of the indigenous and non-indigenous commercial sectors of the ETS RLF using a range of data sources including commercial logbooks, community freezer records, voluntary logbooks and observer surveys. We demonstrate that bycatch is a significant component of the catch for both sectors and identify substantial differences in harvest patterns and effort dynamics between the sectors. Differences between sectors were observed in species composition and spatial and temporal patterns in catch, effort and catch per unit effort. These results highlight the inherent variation in catch and effort dynamics between the two commercial sectors of the ETS RLF and provide valuable information for the development of future assessments and appropriate management strategies for the fishery. The more reliable estimates of harvest patterns and effort dynamics for both sectors obtained from observer surveys will also assist in resolving issues relating to allocation of reef fish resources in Torres Strait.  相似文献   
5.
Earth is the only planet in the solar system where large amounts of liquid water have been stable at the surface throughout geologic time. This unique trait has resulted in the production of characteristic landforms and massive accumulations of aqueous sediments, as well as enabled the evolution of advanced and diverse forms of life. But while Earth is the only planet with large bodies of water on its surface today, Venus and Mars may have once had lakes or oceans as well. More exotic fluids may be stable in the outer solar system. Prior to the Voyager flybys of the outer planets during the 1970s and 1980s, the moon of Neptune, Triton, was thought to be much larger than the Voyager cameras revealed it to be, and predictions that liquid nitrogen lakes or oceans might be found were made. The moon of Saturn, Titan, however, was found to have a massive atmosphere, so the possibility remains that it may have, or may once have had, lakes or oceans of liquid hydrocarbons. The recent, high-resolution synthetic aperture radar imaging of Venus has failed to reveal any evidence of any putative clement period, but the results for Mars are much more intriguing. Herein, we briefly review work on this subject by a number of investigators, and discuss problems of identifying and recognizing martian landforms as lacustrine or marine. In addition, we present additional examples of possible martian coastal landforms. The former presence of lakes or oceans on Mars has profound implications with regard to the climate history of that planet.  相似文献   
6.
The evaporitic Hessian Zechstein Basin is a sub‐basin of the Southern Zechstein Basin, situated at its southern margin. Twelve facies groups were identified in the Zechstein Limestone and Lower Werra Anhydrite in order to better understand the sequence‐stratigraphic evolution of this sub‐basin, which contains economically important potassium salts. Four different paleogeographic depositional areas were recognized based on the regional distribution of facies. Siliciclastic‐carbonate, carbonate, carbonate‐evaporite and evaporite shallowing‐upward successions are developed. These allow the establishment of parasequences and sequences, as well as correlation throughout the Hessian Basin and into the Southern Zechstein Basin. Two depositional sequences are distinguished, Zechstein sequence 1 and Zechstein sequence 2. The former comprises the succession from the Variscan basement up to the lowermost part of the Werra Anhydrite, including the Kupferschiefer as part of the transgressive systems tract. The highstand systems tract is defined by the Zechstein Limestone, in which two parasequences are developed. In large parts of the Hessian Basin, Zechstein sequence 1 is capped by a karstic, subaerial exposure surface, interpreted as recording a type‐1 sequence boundary that formed during a distinct brine level fall. Low‐lying central areas (Central Hessian Sub‐basin, Werra Sub‐basin), however, were not exposed and show a correlative conformity. Topography was minimal at the end of sequence 1. Widely developed perilittoral, sabkha and salina shallowing‐upward successions indicate a renewed rise of brine level (interpreted as a transgressive systems tract), because of inflow of preconcentrated brines from the Southern Zechstein Basin to the north. This marks the initiation of Zechstein sequence 2, which comprises most of the Lower Werra Anhydrite. In the Central Hessian Sub‐basin, situated proximal to the brine inflow and on the ridges within the Hessian Basin, physico‐chemical conditions were well suited for sulphate precipitation to form a thick cyclic succession. It consists of four parasequences that completely filled the increased accommodation space. In contrast, only minor sulphate accumulation occurred in the Werra Sub‐basin, situated further southwards and distal to the inflow. As a result of substantially different sulphate precipitation rates during increased accommodation, water depth in the region became more variable. The Werra Sub‐basin, characterized by very low sedimentation rates, became increasingly deeper through time, trapping dense halite brines and precipitating rock salt deposits (Werra Halite). This ‘self‐organization’ model for an evaporitic basin, in which depositional relief evolves with sedimentation and relief is filled by evaporite thereafter, contradicts earlier interpretations, that call upon the existence of a tectonic depression in the Werra area, which controlled sedimentation from the beginning of the Zechstein.  相似文献   
7.
Marine plastic pollution is ubiquitous throughout the world’s oceans, and has been found in high concentrations in oceanic gyres of both the northern and southern hemispheres. The number of studies demonstrating plastic debris at seabird colonies and plastic ingestion by adult seabirds has increased over the past few decades. Despite the recent discovery of a large aggregation of plastic debris in the South Pacific subtropical gyre, the incidence of plastics at seabird colonies in New Zealand is unknown. Between 2011 and 2012 we surveyed six offshore islands on the northeast coast of New Zealand’s North Island for burrow-nesting seabird colonies and the presence of plastic fragments. We found non-research related plastic fragments (0.031 pieces/m2) on one island only, Ohinau, within dense flesh-footed shearwater (Puffinus carneipes) colonies. On Ohinau, we found a linear relationship between burrow density and plastic density, with 3.5 times more breeding burrows in areas with plastic fragments found. From these data we conclude that plastic ingestion is a potentially a serious issue for flesh-footed shearwaters in New Zealand. Although these results do not rule out plastic ingestion by other species, they suggest the need for further research on the relationship between New Zealand’s pelagic seabirds and marine plastic pollution.  相似文献   
8.
Coral trout (Plectropomus spp.) are the main target species for commercial fishers in the eastern Torres Strait Reef Line Fishery (ETS RLF). The four species of coral trout known to occur in Torres Strait: Plectropomus leopardus, Plectropomus maculatus, Plectropomus areolatus and Plectropomus laevis are currently managed as a single species in Torres Strait, as there is no species-specific biological information available for the region which could be used to assess whether species differ in their response to fishing pressure. The aim of our study was to determine whether it is appropriate (biologically) to manage coral trout in the ETS RLF as a single species group or whether different management arrangements are required for some species. We used catch data and biological data from samples collected by commercial fishers to examine the distribution within Torres Strait and estimate a range of biological parameters for P. leopardus, P. maculatus and P. areolatus. Insufficient P. laevis samples were collected to reliably examine this species. Results indicated that the population biology, particularly the reproductive biology, of P. areolatus was substantially different to both P. leopardus and P. maculatus. Although it is difficult to predict the response to fishing, P. areolatus may be more vulnerable to fishing than P. leopardus and P. maculatus, due to the larger size at sex change observed for this species and the very low proportion of males protected by the current minimum size limit. Therefore, while the common management arrangements for P. leopardus and P. maculatus appear to be adequate for these species, separate management arrangements are needed for the sustainable harvest of P. areolatus populations in the ETS. Specifically, we recommend the introduction of a maximum size limit for P. areolatus, in addition to the current minimum size limit, which may allow a proportion of males some protection from fishing.  相似文献   
9.
Paleoshoreline evidence for postglacial tilting in Southern Manitoba   总被引:1,自引:0,他引:1  
Detailed air photo interpretation and four seasons of field mapping and surveying in southern Manitoba have revealed that the once-level paleoshorelines of Lake Winnipegosis and Dauphin Lake and the Burnside shoreline of former Lake Agassiz have been tilted up to the northeast by postglacial differential rebound. Our investigation has also revealed that Lake Winnipegosis has the best preserved paleoshoreline record of any of the large lakes in southern Manitoba, including lakes Winnipeg and Manitoba. This is because northeasterly uptilting shifts the region's lakes to the southwest. Lakes with southern outlets, like Lake Winnipegosis, undergo general regression as the outlet is lowered relative to the rest of the basin. Lakes with northern outlets, like lakes Winnipeg and Manitoba, undergo general transgression as northeasterly uptilting raises the outlet relative to the rest of the basin. Along the northeastern shore of Lake Winnipegosis a staircase of at least 32 abandoned Winnipegosis shorelines exists that is consistent with northeasterly tilting. The Dawson level represents the major mid-Holocene highstand on Lake Winnipegosis. It persisted for about 500 years, peaking at 5290 14C yr B.P. (early Dawson) and then falling about 3 m by 4740 14C yr B.P. (late Dawson). The early Dawson shoreline is tilted at 13.5 cm km-1 in a direction N24.3°E. Three other shorelines informally named shoreline 4, shoreline 3, and shoreline 2 are also tilted up to the northeast. Their radiocarbon ages (and slopes in cm km-1) are 3330 yr B.P. (2.2), 1510 yr B.P. (1.3), and 1080 yr B.P. (0.7), respectively. On Dauphin Lake shoreline IV is the oldest level mapped for this study. It has a 14C age of 7910 yr B.P. and is tilted at 21.7 cm km-1 in a direction N44.4°E. The Id shoreline marks the major mid-Holocene highstand for Dauphin Lake. It peaked at 4640 14C yr B.P. followed by a rapid decline of about 1 m to the Ib shoreline, which is dated at 4320 14C yr B.P. Id is tilted up at 8.8 cm km-1 in a direction N53.4°E. The next major shoreline is Ia3 which has a 14C age of 3020 yr B.P. and is tilted up at 5.3 cm km-1 in a direction N62.3°E. Tilt directions are significantly more easterly for the Dauphin Lake shorelines than those from Lake Winnipegosis or any of the much older Lake Agassiz shorelines. Taken together, the Winnipegosis and Dauphin isobases indicate that the direction of tilt in southern Manitoba is more complex than a simple uni-directional pattern. The observed pattern of tilting for paleoshorelines in southern Manitoba agrees better with predictions derived from the recently revised loading history model ICE-4G than with those from its predecessor ICE-3G. In general, the calculated tilt based on the ICE-3G load tends to exceed the observed tilt, while ICE-4G tends to underestimate it. Both ice load models appear to disagree most with our observed tilts in this region during the interval before about 9000 cal yr B.P., when deglaciation was proceeding rapidly and the large water load associated with Lake Agassiz covered the region. Because both of these ice load models have been estimated mainly from a global data set of relative sea level curves from marine coast sites, it is not unexpected that model tilts derived from them do not agree well with observations in the North American continental interior. The pattern of postglacial crustal deformation for southern Manitoba described in this paper could be used to further refine ice load models for the North American continental interior.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号