首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
海洋学   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Wu  Chuangzhou  Chu  Jian  Wu  Shifan  Cheng  Liang  van Paassen  Leon A. 《Acta Geotechnica》2019,14(3):673-683

Biogrouting is a new ground improvement method that has been studied in recent years. This method involves mainly the use of a microbially induced calcite precipitation process to bind soil particles to increase the strength or to fill in the pores of soil or joints of rock for seepage control. There are two major challenges in the use of biogrout for seepage control through rock joints. The first is how to inject the biogrout solutions, and the second is to understand the mechanisms for the formation of calcite under seepage flow. In this paper, a study on the injection of biogrout solution and the formation of precipitates along a circular 1D flow channel is presented. To minimize the influence of flow, a new one-phase injection method to inject bacterial solution and cementation agents simultaneously was adopted in this study. Factors affecting the formation and distribution of precipitates along the flow channel such as flow velocity, flow rate, and aperture of flow channel were investigated. The experimental results indicated that less calcite was precipitated at locations further away from the injection point due to depletion of the reactants’ concentrations along the flow path. Using the one-phase injection method, the bacterial activity had a major effect on the accumulation of the calcite on the inner surface of the flow channel. The total calcite precipitated on the surface of the flow channel increased slightly with increasing bacterial activity or flow rate. An equation to predict the distance travelled by the biosolution has been derived based on the testing results.

  相似文献   
2.
Abstract

Evaluation of the strength of cement-treated clay with a broad range of mix ratios and curing periods was conducted using unconfined compression tests (UCTs). The influence of cement content, total water content, and curing period on the unconfined compressive strength of cemented clay are investigated. It is found that, at constant total water content, higher cement content results in higher unconfined compressive strength, while the total water content has an opposite effect. A power function can be used to correlate the unconfined compressive strength with the cement content or the total water content. For a fixed mix ratio, the unconfined compressive strength of cement-stabilized clay increases with the curing period, the effect of which can be characterized by a semi-log formula. Also, a strength-prediction model that considers both mix ratios and curing periods for cement-admixed marine clay is developed and validated; the model can capture the effect of clay type by considering the plastic index of untreated soils. It is also proved that the proposed framework for strength development is also applicable for other cement types.  相似文献   
3.
We present an analytical model for the shear behaviour of rock joints with progressive degradation of two-order asperities including waviness and unevenness. Critical waviness and critical unevenness are used to respectively represent the mechanical involvements of waviness and unevenness during shear. The degradation process of two-order asperities are predicted by considering the stepwise relationship among dilation angle, sheared and unsheared asperity areas, and plastic tangential work. The dilation angle of each asperity decreases as plastic tangential work accumulates. The progressive degradation transiting from critical unevenness to critical waviness is realised through examining the dilation angle and the unsheared area of critical unevenness. The model's predictions are compared with the experimental data from direct shear tests on both regular- and irregular-shaped joints. Good agreement between analytical and experimental curves demonstrate the credence of the proposed model. Therefore, the model, after implemented in finite and discrete element codes, is practicable for the stability assessment of rock-engineering structures.  相似文献   
4.
Kou  Hailei  Jing  Hao  Wu  Chuangzhou  Ni  Pengpeng  Wang  Yiyi  Horpibulsuk  Suksun 《Acta Geotechnica》2022,17(5):1859-1877

Improving the engineering properties of low-strength soft clay in an environmentally friendly way becomes a challenge in coastal areas. Conventional ground treatment techniques for marine clay using cement can cause significant environmental pollution. In this study, the potential use of industrial waste residue-based binder (IWRB), a silicate-based chemical modified by a powdery polymer, as a substitute for Portland cement (PC) is investigated. Collected marine clay was treated with various IWRB-to-PC ratios (0:8, 4:4, 2:6 and 8:0 wt. %) to measure the mechanical properties, through unconfined compression (UC) test and one-dimensional consolidation (ODC) test, and the microstructural and mineralogical characters, through scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The strength and the deformation of specimens treated with mixed IWRB and PC in a ratio of 1:1 were similar to those improved with PC alone, but the toughness was significantly improved. The microstructural results demonstrated that the cementitious compounds (C–S–H and C–A–S–H) increased significantly in the early curing stage of marine clay treated with IWRB, contributing to the improvement of mechanical properties. It is suggested that IWRB can be an effective substitute for PC to reduce the cost and environmental pollution.

  相似文献   
5.
Kou  Hai-Lei  Liu  Jia-Hui  Zhang  Peng  Wu  Chuangzhou  Ni  Pengpeng  Wang  Dong 《Acta Geotechnica》2022,17(12):5375-5389
Acta Geotechnica - Coconut can be found extensively in the coastal area of south China, where sandy slopes always suffer from erosion due to typhoon. Recycled shredded coconut coir (RSC) was...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号