首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   4篇
  国内免费   1篇
测绘学   4篇
大气科学   10篇
地球物理   41篇
地质学   42篇
海洋学   27篇
天文学   40篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   9篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有173条查询结果,搜索用时 216 毫秒
1.
We report multi-frequency and multi-epoch radio continuum observations with multi-spatial resolution for the low-luminosity active galactic nucleus (LLAGN) NGC 266. In the centimetre regime, we find diffuse components with Very Large Array (VLA) observations, and a variable compact core with a rising spectrum with Very Long Baseline Array (VLBA) observations. Although the spectral index of the rising spectrum is consistent with the prediction of the simple advection-dominated accretion flow (ADAF) model, the observed radio power is slightly high compared with that of the model prediction. A spectral break at centimetre-to-millimetre wavelengths is inferred from the upper limits of flux densities from Nobeyama Millimetre Array (NMA) and James Clerk Maxwell Telescope (JCMT) data at millimetre and submillimetre wavelengths, respectively. More complicated considerations are required for the theoretical model to interpret such observed radio properties.  相似文献   
2.
In situ strength measurements on natural upper-mantle minerals   总被引:1,自引:0,他引:1  
Using in situ strength measurements at pressures up to 10 GPa and at room temperature, 400, 600, and 700°C, we examined rheological properties of olivine, orthopyroxene, and chromian-spinel contained in a mantle-derived xenolith. Mineral strengths were estimated using widths of X-ray diffraction peaks as a function of pressure, temperature, and time. Differential stresses of all minerals increase with increasing pressure, but they decrease with increasing temperature because of elastic strain on compression and stress relaxation during heating. During compression at room temperature, all minerals deform plastically at differential stress of 4–6 GPa. During subsequent heating, thermally induced yielding is observed in olivine at 600°C. Neither orthopyroxene nor spinel shows complete stress relaxation, but both retain some stress even at 700°C. The strength of the minerals decreases in the order of chromian-spinel ≈ orthopyroxene > olivine for these conditions. This order of strength is consistent with the residual pressure of fluid inclusions in mantle xenoliths.  相似文献   
3.
The detailed flow structure around a tical front in Hiuchi-Nada, Japan was observed with the use of ADCP (Acoustic Doppler Current Profiler). The surface convergence region is observed at the transition zone between vertically well mixed area and the stratified area. The surface divergence regions exist next to the surface convergence region. The strong downward current is estimated in the middle layer just below the surface convergence region. The maximum surface convergence and the maximum downward velocity in the middle layer are 1.0×10–4 s–1 and 0.12 cm s–1, respectively.  相似文献   
4.
5.
High-pressure synchrotron infrared (IR) absorption spectra were collected between 650 and 4,000 cm−1 at ambient temperature for hydrous Mg-ringwoodite (γ-Mg2SiO4) up to 30 GPa. The main feature in the OH stretching region is an extremely broad band centred at 3,150 cm−1. The hydrogen bond is strong for most protons and the most probable site for protonation is the tetrahedral edge. With increasing pressure, this band shifts downward while decreasing its integrated intensity until disappearance at a pressure of 25 GPa. Only one band at 2,450 cm−1 and an absorption plateau persist with a maximum wavenumber of 3,800 cm−1. This behaviour is reversible upon pressure release. We interpret this as a second-order phase transition occurring in hydrated Mg-ringwoodite at high pressure (beyond ∼ 25 GPa). This result is compatible with the observation by Kleppe et al. (Phys Chem Miner 29:473–476, 2002a) who suggested the presence of Si–O–Si linkages and/or partial increase in the coordination of Si. Beyond the phase transition, the protons are delocalized and their environment on the ringwoodite structure is probably quite different from that at low pressure. Data obtained in situ at high pressures and temperatures are needed to better understand the effect of protonation on the structure and to better constrain this phase transition.  相似文献   
6.
Dynamic damaging potential of ground motions must be evaluated by the response behaviour of structures, and it is necessary to indicate what properties of ground motions are most appropriate for evaluation. For that purpose, the behaviour of energy input process and hysteretic energy dissipation are investigated in this study. It is found that the momentary input energy that is an index for the intensity of input energy is related to the characteristics of earthquakes such as cyclic or impulsive, and to the response displacement of structures immediately. On the basis of these results, a procedure is proposed to predict inelastic response displacement of structures by corresponding earthquake input energy to structural dissipated damping and hysteretic energy. In this procedure the earthquake response of structures is recognized as an input and dissipation process of energy, and therefore structural properties and damaging properties of ground motions can be taken into account more generally. Lastly, the studies of the pseudodynamic loading test of reinforced concrete structure specimens subjected to ground motions with different time duration are shown. The purpose of this test is to estimate the damaging properties of ground motions and the accuracy of the proposed prediction procedure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
Propagation of electromagnetic (EM) waves from an earthquake focus in the conductive Earth has been investigated using 1/1,000,000 scaling models taking earth-ionosphere and ocean-Moho plane parallel-plate waveguides into account. Microwaves at a frequency, ωm, a million times higher than that of seismic EM signal (SEMS), ω, were generated at the model focus. They are propagated in a salt solution modeling the earth's crust and reflected by ocean, fault planes, ionosphere and Moho plane all made by aluminum. Distribution of EM power was mapped by scanning a detector antenna over the model Earth's surface. The skin depth, δ, calculated by the exact skin depth equation, 1/δ=ω(μ/2)1/2 [(1+(1/ωρ)2)1/2 −1]1/2 where dielectric constant, and permeability, μ are the same but resistivity, ρ, 10−6 times smaller than that of Earth, gave 10−6 times small skin depth validating the model scaling index. Images for evanescent and wave-ripple standing waves disturbed by normal, strike-slip and dip-slip conductive fault planes have been obtained using an aluminum plate. The co-circular contour map above the epicenter due to evanescence was pushed to the north east direction from the epicenter by the presence of ocean for the Loma Prieta earthquake, while to north direction for the Kobe earthquake. The intensity of EM ULF emissions for the Loma Prieta earthquake is discussed quantitatively.  相似文献   
8.
Lower-tropospheric tropical synoptic-scale disturbances (TSDs) are associated with severe weather systems in the Asian Monsoon region. Therefore, exact prediction of the development and behavior of TSDs using atmospheric general circulation models is expected to improve weather forecasting for this region. Recent state-of-the art global cloud-system resolving modeling approaches using a Nonhydrostatic Icosahedral Atmospheric Model (NICAM) may improve representation of TSDs. This study evaluates TSDs over the western Pacific in output from an Atmospheric Model Intercomparison Project (AMIP)-like control experiment using NICAM. Data analysis compared the simulated and observed fields. NICAM successfully simulates the average activity, three-dimensional structures, and characteristics of the TSDs during the Northern summer. The variance statistics and spectral analysis showed that the average activity of the simulated TSDs over the western Pacific during Northern summer broadly captures that of observations. The composite analysis revealed that the structures of the simulated TSDs resemble the observed TSDs to a large degree. The simulated TSDs exhibited a typical southeast- to northwest-oriented wave-train pattern that propagates northwestward from near the equator around 150 ° E toward the southern coast of China. However, the location of the simulated wave train and wave activity center was displaced northward by approximately a few degrees of latitude from that in the observation. This displacement can be attributed to the structure and strength of the background basic flow in the simulated fields. Better representation of the background basic states is required for more successful simulation of TSDs.  相似文献   
9.
Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth’s crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure–volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P–T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate–sulfide speciation may play a major role in the sulfur recycling into the deep Earth.  相似文献   
10.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号