首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 375 毫秒
1
1.
Palaeoflood hydraulic modelling is essential for quantifying ‘millennial flood’ events not covered in the instrumental record. Palaeoflood modelling research has largely focused on one-dimensional analysis for geomorphologically stable fluvial settings because two-dimensional analysis for dynamic alluvial settings is time consuming and requires a detailed representation of the past landscape. In this study, we make the step to spatially continuous palaeoflood modelling for a large and dynamic lowland area. We applied advanced hydraulic model simulations (1D–2D coupled set-up in HEC-RAS with 950 channel sections and 108 × 103 floodplain grid cells) to quantify the extent and magnitude of past floods in the Lower Rhine river valley and upper delta. As input, we used a high-resolution terrain reconstruction (palaeo-DEM) of the area in early mediaeval times, complemented with hydraulic roughness values. After conducting a series of model runs with increasing discharge magnitudes at the upstream boundary, we compared the simulated flood water levels with an inventory of exceeded and non-exceeded elevations extracted from various geological, archaeological and historical sources. This comparison demonstrated a Lower Rhine millennial flood magnitude of approximately 14,000 m3/s for the Late Holocene period before late mediaeval times. This value exceeds the largest measured discharges in the instrumental record, but not the design discharges currently accounted for in flood risk management.  相似文献   
2.
Natural Hazards - The article was published Open Access under the Dutch Compact Agreement; however, due to an internal system error, previous HTML rendering of the article did not reflect this.  相似文献   
3.

Currently, the effect of dike breaches on downstream discharge partitioning and flood risk is not addressed in flood safety assessments. In a bifurcating river system, a dike breach may cause overland flows which can change downstream flood risk and discharge partitioning. This study examines how dike breaches and overflow affect overland flow patterns and discharges of the rivers of the Rhine delta. For extreme discharges, an increase in flood risk along the river branch with the smallest discharge capacity was found, while flood risk along the other river branches was reduced. Therefore, dike breaches and resulting overland flow patterns must be included in flood safety assessments.

  相似文献   
4.
Bomers  A.  Schielen  R. M. J.  Hulscher  S. J. M. H. 《Natural Hazards》2020,103(2):1633-1637
Natural Hazards - In this reply, we would like to comment on the discussion paper of AlQasimi and Mahdi (Nat Hazards 97:1–4, 2020. https://doi.org/10.1007/s11069-020-03904-1 ). We discuss...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号