首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地质学   22篇
  2022年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
  1979年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
The paper describes a mechanical model for estimating the flexural response of a strip footing, supporting a column (imposing a concentrated load), resting on a compacted granular bed overlying a reinforcement layer for example, geogrids, geomats etc. below which lies a loose soil deposit. The footing is idealized as a beam and the reinforcing element is assumed to have finite bending stiffness and negligible frictional resistance. The upper and lower soil layers are idealized by a series of linear and discrete springs (Winkler springs) of different stiffness values. To find the response of such a model the governing differential equations have been derived and expressed in a nondimensional form. A closed form analytical solution of the same has been obtained subjected to appropriate boundary conditions. Using the present approach the resulting solution for a degenerated case of a long beam is found to be identical to the same of Hetenyi (1946, Beams on elastic foundations, University of Michigan press, Ann Arbor, MI). Parametric studies reveal that the ratio of flexural rigidity of upper and lower beam and the ratio of stiffness of the upper and lower soil layers affect significantly the response of the foundation.  相似文献   
2.
3.
The paper pertains to the analysis of piles embedded in liquefiable soils to predict its’ critical buckling load under partial to full loss of lateral support over a portion of the pile length. The analysis is based on extension of Mindlin solution for a point load acting inside a semi infinite elastic half space. Degenerated solutions obtained by using the developed method compares very well with reported results. Parametric studies showed that the depth of liquefiable soil, degradation of soil strength on liquefaction, slenderness ratio, pile stiffness factor and end conditions have significant influence on the buckling behavior of the piles.  相似文献   
4.
Optimum design of nailed soil slopes   总被引:12,自引:0,他引:12  
In this paper, a generalized method of computer based optimum design of soil-nailed slopes is reported. A limit equilibrium formulation satisfying overall and internal equilibrium and considering the effect of tensile resistance of the reinforcement has been used in computing the stability of nailed slopes. The quantity of steel requirement for raising the factor of safety to a desired value is estimated. The location, size (length and diameter) and orientation of the nails and the location and shape of the critical shear surface have been treated as variables. The solutions have been isolated by formulating the problem as one of non-linear programming. The applicability of the developed method has been verified by comparing the predicted failure surfaces with those observed in model tests as well as in the field and also reported theoretical results.  相似文献   
5.
A new method is proposed for the optimum design of nailed soil slopes. A rigorous method of stability analysis, namely the Janbu's method, is modified in the limit equilibrium formulation, considering the effect of reinforcement. Only the tensile resistance of the reinforcement is included and the effects of shear and bending neglected. The total reinforcement force required to raise the factor of safety to a desired value has been minimized with the inclinations of the reinforcement and the distribution of the reinforcement forces as decision variables. In order to illustrate the efficacy of the proposed method, the results are compared with the available solutions. The effect of the number and relative locations of the reinforcements on the amount of reinforcement required, is studied. The lengths of reinforcement required to raise the factor of safety to various desired values and the corresponding optimum designs are presented. The acceptability of the critical surface is verified, by ensuring that the shear and normal stresses are positive along the critical surface.  相似文献   
6.
In the present study, a mechanical model has been developed to study the behavior of multilayer geosynthetic-reinforced granular fill over stone column-reinforced soft soil. The granular fill and geosynthetic reinforcement layers have been idealized by Pasternak shear layer and rough elastic membranes, respectively. The Kelvin–Voight model has been used to represent the time-dependent behavior of saturated soft soil. The stone columns are idealized by stiffer springs and assumed to be linearly elastic. The nonlinear behavior of the soft soil and granular fill is considered. The effect of consolidation of soft soil due to inclusion of the stone columns on settlement response has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. It has been observed that if the soft soil is improved with stone columns, the multilayer reinforcement system is less effective as compared to single layer reinforcement to reduce the total settlement as there is considerable reduction in the total settlement due to stone column itself. Multilayer reinforcement system is effective for reducing the total settlement when stone columns are not used. However, multilayer reinforcement system is effective to transfer the stress from soil to stone column. The differential settlement is also slightly reduced due to application of multiple geosynthetic layers as compared to the single layer reinforcement system.  相似文献   
7.
The paper presents a mechanical model to predict the behavior of geosynthetic-reinforced granular fill resting over soft soil improved with group of stone columns subjected to circular or axi-symmetric loading. The saturated soft soil has been idealized by spring-dashpot system. Pasternak shear layer and rough elastic membrane represent the granular fill and geosynthetic reinforcement layer, respectively. The stone columns are idealized by stiffer springs. The nonlinear behavior of granular fill and soft soil is considered. Consolidation of the soft soil due to inclusion of stone columns has also been included in the model. The results obtained by using the present model when compared with the reported results obtained from laboratory model tests shows very good agreement. The effectiveness of geosynthetic reinforcement to reduce the maximum and differential settlement and transfer the stress from soft soil to stone columns is highlighted. It is observed that the reduction of settlement and stress transfer process are greatly influenced by stiffness and spacing of the stone columns. It has been further observed that for both geosynthetic-reinforced and unreinforced cases, the maximum settlement does not change if the ratio between spacing and diameter of stone columns is greater than 4.  相似文献   
8.
Pseudo Static Seismic Stability Analysis of Reinforced Soil Structures   总被引:1,自引:0,他引:1  
The paper pertains to the pseudo-static seismic stability analysis of reinforced soil structures. Using limit equilibrium method and assuming the failure surface to be logarithmic spiral, analysis has been conducted to maintain internal stability against both tensile and pullout failure of the reinforcements. The external stability of the reinforced earth wall is also assessed in terms of its sliding, overturning, eccentricity and bearing modes of failure. The influence of the intensity of the surcharge load placed on the backfill is also considered in the analysis. The obtained results are validated by comparing the same with those reported in literature. Studies have also been made regarding the influence of backfill soil friction angle, horizontal and vertical seismic accelerations, surcharge load, the tensile strength of reinforcement, pullout length of the reinforcement and number of reinforcement layers on the seismic stability against various failure modes as mentioned earlier.  相似文献   
9.
This study deals with the prediction of the lower-bound bearing capacity of embedded smooth strip footings. The effect of mesh pattern on the result has been studied and a generalized mesh pattern has been proposed. The results obtained are compared with the computed solution using Meyerhof's bearing capacity equation.  相似文献   
10.
The residual strength of clay is very important to evaluate long term stability of proposed and existing slopes and for remedial measure for failure slopes. Various attempts have been made to correlate the residual friction angle (r) with index properties of soil. This paper presents a neural network model to predict the residual friction angle based on clay fraction and Atterberg's limits. Different sensitivity analysis was made to find out the important parameters affecting the residual friction angle. Emphasis is placed on the construction of neural interpretation diagram, based on the weights of the developed neural network model, to find out direct or inverse effect of soil properties on the residual shear angle. A prediction model equation is established with the weights of the neural network as the model parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号